\left( 2x-2 \right) dx+(3y+7)y=0
d üçün həll et (complex solution)
\left\{\begin{matrix}d=-\frac{y\left(3y+7\right)}{2x\left(x-1\right)}\text{, }&x\neq 1\text{ and }x\neq 0\\d\in \mathrm{C}\text{, }&\left(y=-\frac{7}{3}\text{ and }x=0\right)\text{ or }\left(y=-\frac{7}{3}\text{ and }x=1\right)\text{ or }\left(y=0\text{ and }x=0\right)\text{ or }\left(y=0\text{ and }x=1\right)\end{matrix}\right,
d üçün həll et
\left\{\begin{matrix}d=-\frac{y\left(3y+7\right)}{2x\left(x-1\right)}\text{, }&x\neq 1\text{ and }x\neq 0\\d\in \mathrm{R}\text{, }&\left(y=-\frac{7}{3}\text{ and }x=0\right)\text{ or }\left(y=-\frac{7}{3}\text{ and }x=1\right)\text{ or }\left(y=0\text{ and }x=0\right)\text{ or }\left(y=0\text{ and }x=1\right)\end{matrix}\right,
x üçün həll et (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{d\left(d-14y-6y^{2}\right)}+d}{2d}\text{; }x=\frac{-\sqrt{d\left(d-14y-6y^{2}\right)}+d}{2d}\text{, }&d\neq 0\\x\in \mathrm{C}\text{, }&\left(y=-\frac{7}{3}\text{ or }y=0\right)\text{ and }d=0\end{matrix}\right,
x üçün həll et
\left\{\begin{matrix}x=\frac{\sqrt{d\left(d-14y-6y^{2}\right)}+d}{2d}\text{; }x=\frac{-\sqrt{d\left(d-14y-6y^{2}\right)}+d}{2d}\text{, }&\left(y\neq 0\text{ and }y\neq -\frac{7}{3}\text{ and }d=6y^{2}+14y\right)\text{ or }\left(d\leq 6y^{2}+14y\text{ and }d<0\right)\text{ or }\left(d\geq 6y^{2}+14y\text{ and }d>0\right)\\x\in \mathrm{R}\text{, }&\left(y=-\frac{7}{3}\text{ or }y=0\right)\text{ and }d=0\end{matrix}\right,
Qrafik
Paylaş
Panoya köçürüldü
\left(2xd-2d\right)x+\left(3y+7\right)y=0
2x-2 ədədini d vurmaq üçün paylama qanunundan istifadə edin.
2dx^{2}-2dx+\left(3y+7\right)y=0
2xd-2d ədədini x vurmaq üçün paylama qanunundan istifadə edin.
2dx^{2}-2dx+3y^{2}+7y=0
3y+7 ədədini y vurmaq üçün paylama qanunundan istifadə edin.
2dx^{2}-2dx+7y=-3y^{2}
Hər iki tərəfdən 3y^{2} çıxın. Sıfırdan istənilən şeyi çıxdıqda mənfisi alınır.
2dx^{2}-2dx=-3y^{2}-7y
Hər iki tərəfdən 7y çıxın.
\left(2x^{2}-2x\right)d=-3y^{2}-7y
d ehtiva edən bütün həddləri birləşdirin.
\frac{\left(2x^{2}-2x\right)d}{2x^{2}-2x}=-\frac{y\left(3y+7\right)}{2x^{2}-2x}
Hər iki tərəfi 2x^{2}-2x rəqəminə bölün.
d=-\frac{y\left(3y+7\right)}{2x^{2}-2x}
2x^{2}-2x ədədinə bölmək 2x^{2}-2x ədədinə vurmanı qaytarır.
d=-\frac{y\left(3y+7\right)}{2x\left(x-1\right)}
-y\left(7+3y\right) ədədini 2x^{2}-2x ədədinə bölün.
\left(2xd-2d\right)x+\left(3y+7\right)y=0
2x-2 ədədini d vurmaq üçün paylama qanunundan istifadə edin.
2dx^{2}-2dx+\left(3y+7\right)y=0
2xd-2d ədədini x vurmaq üçün paylama qanunundan istifadə edin.
2dx^{2}-2dx+3y^{2}+7y=0
3y+7 ədədini y vurmaq üçün paylama qanunundan istifadə edin.
2dx^{2}-2dx+7y=-3y^{2}
Hər iki tərəfdən 3y^{2} çıxın. Sıfırdan istənilən şeyi çıxdıqda mənfisi alınır.
2dx^{2}-2dx=-3y^{2}-7y
Hər iki tərəfdən 7y çıxın.
\left(2x^{2}-2x\right)d=-3y^{2}-7y
d ehtiva edən bütün həddləri birləşdirin.
\frac{\left(2x^{2}-2x\right)d}{2x^{2}-2x}=-\frac{y\left(3y+7\right)}{2x^{2}-2x}
Hər iki tərəfi 2x^{2}-2x rəqəminə bölün.
d=-\frac{y\left(3y+7\right)}{2x^{2}-2x}
2x^{2}-2x ədədinə bölmək 2x^{2}-2x ədədinə vurmanı qaytarır.
d=-\frac{y\left(3y+7\right)}{2x\left(x-1\right)}
-y\left(7+3y\right) ədədini 2x^{2}-2x ədədinə bölün.
Nümunələr
Quadratik tənlik
{ x } ^ { 2 } - 4 x - 5 = 0
Triqonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Xətti tənlik
y = 3x + 4
Arifmetika
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eyni vaxtda tənlik
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferensiallaşdırma
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İnteqrasiya
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitlər
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}