Əsas məzmuna keç
Qiymətləndir
Tick mark Image

Veb Axtarışdan Oxşar Problemlər

Paylaş

\int _{122}^{328}\left(2-\left(x^{2}-4x+4\right)\right)^{2}-\left(2-0\times 5\right)^{2}\mathrm{d}x
\left(x-2\right)^{2} genişləndirmək üçün \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ikitərkibli teoremindən istifadə edin.
\int _{122}^{328}\left(2-x^{2}+4x-4\right)^{2}-\left(2-0\times 5\right)^{2}\mathrm{d}x
x^{2}-4x+4 əksini tapmaq üçün hər bir həddin əksini tapın.
\int _{122}^{328}\left(-2-x^{2}+4x\right)^{2}-\left(2-0\times 5\right)^{2}\mathrm{d}x
-2 almaq üçün 2 4 çıxın.
\int _{122}^{328}x^{4}-8x^{3}+20x^{2}-16x+4-\left(2-0\times 5\right)^{2}\mathrm{d}x
Kvadrat -2-x^{2}+4x.
\int _{122}^{328}x^{4}-8x^{3}+20x^{2}-16x+4-\left(2-0\right)^{2}\mathrm{d}x
0 almaq üçün 0 və 5 vurun.
\int _{122}^{328}x^{4}-8x^{3}+20x^{2}-16x+4-2^{2}\mathrm{d}x
2 almaq üçün 2 0 çıxın.
\int _{122}^{328}x^{4}-8x^{3}+20x^{2}-16x+4-4\mathrm{d}x
4 almaq üçün 2 2 qüvvətini hesablayın.
\int _{122}^{328}x^{4}-8x^{3}+20x^{2}-16x\mathrm{d}x
0 almaq üçün 4 4 çıxın.
\int x^{4}-8x^{3}+20x^{2}-16x\mathrm{d}x
Qeyri-müəyyən inteqralı hesablayın.
\int x^{4}\mathrm{d}x+\int -8x^{3}\mathrm{d}x+\int 20x^{2}\mathrm{d}x+\int -16x\mathrm{d}x
Cəm qiymətini hədbəhəd inteqrasiya edin.
\int x^{4}\mathrm{d}x-8\int x^{3}\mathrm{d}x+20\int x^{2}\mathrm{d}x-16\int x\mathrm{d}x
Hər bir həddə konstantı faktorlara ayırın.
\frac{x^{5}}{5}-8\int x^{3}\mathrm{d}x+20\int x^{2}\mathrm{d}x-16\int x\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} tarixdən etibarən k\neq -1 üçün \int x^{4}\mathrm{d}x-i \frac{x^{5}}{5} ilə əvəzləyin.
\frac{x^{5}}{5}-2x^{4}+20\int x^{2}\mathrm{d}x-16\int x\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} tarixdən etibarən k\neq -1 üçün \int x^{3}\mathrm{d}x-i \frac{x^{4}}{4} ilə əvəzləyin. -8 ədədini \frac{x^{4}}{4} dəfə vurun.
\frac{x^{5}}{5}-2x^{4}+\frac{20x^{3}}{3}-16\int x\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} tarixdən etibarən k\neq -1 üçün \int x^{2}\mathrm{d}x-i \frac{x^{3}}{3} ilə əvəzləyin. 20 ədədini \frac{x^{3}}{3} dəfə vurun.
\frac{x^{5}}{5}-2x^{4}+\frac{20x^{3}}{3}-8x^{2}
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} tarixdən etibarən k\neq -1 üçün \int x\mathrm{d}x-i \frac{x^{2}}{2} ilə əvəzləyin. -16 ədədini \frac{x^{2}}{2} dəfə vurun.
\frac{328^{5}}{5}-2\times 328^{4}+\frac{20}{3}\times 328^{3}-8\times 328^{2}-\left(\frac{122^{5}}{5}-2\times 122^{4}+\frac{20}{3}\times 122^{3}-8\times 122^{2}\right)
İnteqrasiyasının yuxarı limitində qiymətləndirilən ifadənin ibtidaisindən inteqrasiyanın aşağı limitində qiymətləndirilən ibtidai çıxıldıqda müəyyən inteqral əmələ gəlir.
\frac{10970799276608}{15}
Sadələşdirin.