Əsas məzmuna keç
Qiymətləndir
Tick mark Image

Veb Axtarışdan Oxşar Problemlər

Paylaş

\int 270\sqrt{x}\mathrm{d}x
Qeyri-müəyyən inteqralı hesablayın.
270\int \sqrt{x}\mathrm{d}x
\int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x istifadə edərək konstantı faktorlara ayırın.
180x^{\frac{3}{2}}
\sqrt{x} x^{\frac{1}{2}} kimi yenidən yazılsın. \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} tarixdən etibarən k\neq -1 üçün \int x^{\frac{1}{2}}\mathrm{d}x-i \frac{x^{\frac{3}{2}}}{\frac{3}{2}} ilə əvəzləyin. Sadələşdirin. 270 ədədini \frac{2x^{\frac{3}{2}}}{3} dəfə vurun.
180\times 4^{\frac{3}{2}}-180\times 1^{\frac{3}{2}}
İnteqrasiyasının yuxarı limitində qiymətləndirilən ifadənin ibtidaisindən inteqrasiyanın aşağı limitində qiymətləndirilən ibtidai çıxıldıqda müəyyən inteqral əmələ gəlir.
1260
Sadələşdirin.