Əsas məzmuna keç
Qiymətləndir
Tick mark Image
x ilə əlaqədar diferensiallaşdırın
Tick mark Image

Veb Axtarışdan Oxşar Problemlər

Paylaş

\int 2x\left(\left(x^{2}\right)^{3}+3\left(x^{2}\right)^{2}+3x^{2}+1\right)\mathrm{d}x
\left(x^{2}+1\right)^{3} genişləndirmək üçün \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} ikitərkibli teoremindən istifadə edin.
\int 2x\left(x^{6}+3\left(x^{2}\right)^{2}+3x^{2}+1\right)\mathrm{d}x
Qüvvəti başqa qüvvətə yüksəltmək üçün göstəriciləri vurun. 6 almaq üçün 2 və 3 vurun.
\int 2x\left(x^{6}+3x^{4}+3x^{2}+1\right)\mathrm{d}x
Qüvvəti başqa qüvvətə yüksəltmək üçün göstəriciləri vurun. 4 almaq üçün 2 və 2 vurun.
\int 2x^{7}+6x^{5}+6x^{3}+2x\mathrm{d}x
2x ədədini x^{6}+3x^{4}+3x^{2}+1 vurmaq üçün paylama qanunundan istifadə edin.
\int 2x^{7}\mathrm{d}x+\int 6x^{5}\mathrm{d}x+\int 6x^{3}\mathrm{d}x+\int 2x\mathrm{d}x
Cəm qiymətini hədbəhəd inteqrasiya edin.
2\int x^{7}\mathrm{d}x+6\int x^{5}\mathrm{d}x+6\int x^{3}\mathrm{d}x+2\int x\mathrm{d}x
Hər bir həddə konstantı faktorlara ayırın.
\frac{x^{8}}{4}+6\int x^{5}\mathrm{d}x+6\int x^{3}\mathrm{d}x+2\int x\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} tarixdən etibarən k\neq -1 üçün \int x^{7}\mathrm{d}x-i \frac{x^{8}}{8} ilə əvəzləyin. 2 ədədini \frac{x^{8}}{8} dəfə vurun.
\frac{x^{8}}{4}+x^{6}+6\int x^{3}\mathrm{d}x+2\int x\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} tarixdən etibarən k\neq -1 üçün \int x^{5}\mathrm{d}x-i \frac{x^{6}}{6} ilə əvəzləyin. 6 ədədini \frac{x^{6}}{6} dəfə vurun.
\frac{x^{8}}{4}+x^{6}+\frac{3x^{4}}{2}+2\int x\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} tarixdən etibarən k\neq -1 üçün \int x^{3}\mathrm{d}x-i \frac{x^{4}}{4} ilə əvəzləyin. 6 ədədini \frac{x^{4}}{4} dəfə vurun.
\frac{x^{8}}{4}+x^{6}+\frac{3x^{4}}{2}+x^{2}
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} tarixdən etibarən k\neq -1 üçün \int x\mathrm{d}x-i \frac{x^{2}}{2} ilə əvəzləyin. 2 ədədini \frac{x^{2}}{2} dəfə vurun.
x^{2}+\frac{3x^{4}}{2}+x^{6}+\frac{x^{8}}{4}+С
Əgər F\left(x\right) f\left(x\right)-nin ibtidaisidirsə, onda f\left(x\right)-ün bütün ibtidailərinin toplusu F\left(x\right)+C ilə verilir. Bunun üçün, C\in \mathrm{R} inteqrasiyasının konstantını nəticəyə əlavə edin.