Əsas məzmuna keç
Qiymətləndir
Tick mark Image

Veb Axtarışdan Oxşar Problemlər

Paylaş

\int 15t^{3}-135t^{2}+225t\mathrm{d}t
Qeyri-müəyyən inteqralı hesablayın.
\int 15t^{3}\mathrm{d}t+\int -135t^{2}\mathrm{d}t+\int 225t\mathrm{d}t
Cəm qiymətini hədbəhəd inteqrasiya edin.
15\int t^{3}\mathrm{d}t-135\int t^{2}\mathrm{d}t+225\int t\mathrm{d}t
Hər bir həddə konstantı faktorlara ayırın.
\frac{15t^{4}}{4}-135\int t^{2}\mathrm{d}t+225\int t\mathrm{d}t
\int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} tarixdən etibarən k\neq -1 üçün \int t^{3}\mathrm{d}t-i \frac{t^{4}}{4} ilə əvəzləyin. 15 ədədini \frac{t^{4}}{4} dəfə vurun.
\frac{15t^{4}}{4}-45t^{3}+225\int t\mathrm{d}t
\int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} tarixdən etibarən k\neq -1 üçün \int t^{2}\mathrm{d}t-i \frac{t^{3}}{3} ilə əvəzləyin. -135 ədədini \frac{t^{3}}{3} dəfə vurun.
\frac{15t^{4}}{4}-45t^{3}+\frac{225t^{2}}{2}
\int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} tarixdən etibarən k\neq -1 üçün \int t\mathrm{d}t-i \frac{t^{2}}{2} ilə əvəzləyin. 225 ədədini \frac{t^{2}}{2} dəfə vurun.
\frac{15}{4}\times 5^{4}-45\times 5^{3}+\frac{225}{2}\times 5^{2}-\left(\frac{15}{4}\times 1^{4}-45\times 1^{3}+\frac{225}{2}\times 1^{2}\right)
İnteqrasiyasının yuxarı limitində qiymətləndirilən ifadənin ibtidaisindən inteqrasiyanın aşağı limitində qiymətləndirilən ibtidai çıxıldıqda müəyyən inteqral əmələ gəlir.
-540
Sadələşdirin.