Əsas məzmuna keç
Qiymətləndir
Tick mark Image

Veb Axtarışdan Oxşar Problemlər

Paylaş

\int 5-x+2x^{2}-3x^{3}\mathrm{d}x
Qeyri-müəyyən inteqralı hesablayın.
\int 5\mathrm{d}x+\int -x\mathrm{d}x+\int 2x^{2}\mathrm{d}x+\int -3x^{3}\mathrm{d}x
Cəm qiymətini hədbəhəd inteqrasiya edin.
\int 5\mathrm{d}x-\int x\mathrm{d}x+2\int x^{2}\mathrm{d}x-3\int x^{3}\mathrm{d}x
Hər bir həddə konstantı faktorlara ayırın.
5x-\int x\mathrm{d}x+2\int x^{2}\mathrm{d}x-3\int x^{3}\mathrm{d}x
Ümumi inteqrallar cədvəlinin \int a\mathrm{d}x=ax qaydasını istifadə edərək 5-in inteqralını tapın.
5x-\frac{x^{2}}{2}+2\int x^{2}\mathrm{d}x-3\int x^{3}\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} tarixdən etibarən k\neq -1 üçün \int x\mathrm{d}x-i \frac{x^{2}}{2} ilə əvəzləyin. -1 ədədini \frac{x^{2}}{2} dəfə vurun.
5x-\frac{x^{2}}{2}+\frac{2x^{3}}{3}-3\int x^{3}\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} tarixdən etibarən k\neq -1 üçün \int x^{2}\mathrm{d}x-i \frac{x^{3}}{3} ilə əvəzləyin. 2 ədədini \frac{x^{3}}{3} dəfə vurun.
5x-\frac{x^{2}}{2}+\frac{2x^{3}}{3}-\frac{3x^{4}}{4}
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} tarixdən etibarən k\neq -1 üçün \int x^{3}\mathrm{d}x-i \frac{x^{4}}{4} ilə əvəzləyin. -3 ədədini \frac{x^{4}}{4} dəfə vurun.
5\times 4-\frac{4^{2}}{2}+\frac{2}{3}\times 4^{3}-\frac{3}{4}\times 4^{4}-\left(5\times 1-\frac{1^{2}}{2}+\frac{2}{3}\times 1^{3}-\frac{3}{4}\times 1^{4}\right)
İnteqrasiyasının yuxarı limitində qiymətləndirilən ifadənin ibtidaisindən inteqrasiyanın aşağı limitində qiymətləndirilən ibtidai çıxıldıqda müəyyən inteqral əmələ gəlir.
-\frac{567}{4}
Sadələşdirin.