Əsas məzmuna keç
Qiymətləndir
Tick mark Image

Veb Axtarışdan Oxşar Problemlər

Paylaş

\int x+\sqrt[3]{x}+\frac{1}{x^{2}}\mathrm{d}x
Qeyri-müəyyən inteqralı hesablayın.
\int x\mathrm{d}x+\int \sqrt[3]{x}\mathrm{d}x+\int \frac{1}{x^{2}}\mathrm{d}x
Cəm qiymətini hədbəhəd inteqrasiya edin.
\frac{x^{2}}{2}+\int \sqrt[3]{x}\mathrm{d}x+\int \frac{1}{x^{2}}\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} tarixdən etibarən k\neq -1 üçün \int x\mathrm{d}x-i \frac{x^{2}}{2} ilə əvəzləyin.
\frac{x^{2}}{2}+\frac{3x^{\frac{4}{3}}}{4}+\int \frac{1}{x^{2}}\mathrm{d}x
\sqrt[3]{x} x^{\frac{1}{3}} kimi yenidən yazılsın. \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} tarixdən etibarən k\neq -1 üçün \int x^{\frac{1}{3}}\mathrm{d}x-i \frac{x^{\frac{4}{3}}}{\frac{4}{3}} ilə əvəzləyin. Sadələşdirin.
\frac{x^{2}}{2}+\frac{3x^{\frac{4}{3}}}{4}-\frac{1}{x}
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} tarixdən etibarən k\neq -1 üçün \int \frac{1}{x^{2}}\mathrm{d}x-i -\frac{1}{x} ilə əvəzləyin.
\frac{2^{2}}{2}+\frac{3}{4}\times 2^{\frac{4}{3}}-2^{-1}-\left(\frac{1^{2}}{2}+\frac{3}{4}\times 1^{\frac{4}{3}}-1^{-1}\right)
İnteqrasiyasının yuxarı limitində qiymətləndirilən ifadənin ibtidaisindən inteqrasiyanın aşağı limitində qiymətləndirilən ibtidai çıxıldıqda müəyyən inteqral əmələ gəlir.
\frac{5}{4}+\frac{3\sqrt[3]{2}}{2}
Sadələşdirin.