Qiymətləndir
\frac{7}{8}=0,875
Paylaş
Panoya köçürüldü
\int \frac{3}{t^{4}}\mathrm{d}t
Qeyri-müəyyən inteqralı hesablayın.
3\int \frac{1}{t^{4}}\mathrm{d}t
\int af\left(t\right)\mathrm{d}t=a\int f\left(t\right)\mathrm{d}t istifadə edərək konstantı faktorlara ayırın.
-\frac{1}{t^{3}}
\int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} tarixdən etibarən k\neq -1 üçün \int \frac{1}{t^{4}}\mathrm{d}t-i -\frac{1}{3t^{3}} ilə əvəzləyin. 3 ədədini -\frac{1}{3t^{3}} dəfə vurun.
-2^{-3}+1^{-3}
İnteqrasiyasının yuxarı limitində qiymətləndirilən ifadənin ibtidaisindən inteqrasiyanın aşağı limitində qiymətləndirilən ibtidai çıxıldıqda müəyyən inteqral əmələ gəlir.
\frac{7}{8}
Sadələşdirin.
Nümunələr
Quadratik tənlik
{ x } ^ { 2 } - 4 x - 5 = 0
Triqonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Xətti tənlik
y = 3x + 4
Arifmetika
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eyni vaxtda tənlik
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferensiallaşdırma
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İnteqrasiya
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitlər
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}