Qiymətləndir
\frac{39}{4}=9,75
Paylaş
Panoya köçürüldü
\int x^{5}-x^{3}+2x\mathrm{d}x
Qeyri-müəyyən inteqralı hesablayın.
\int x^{5}\mathrm{d}x+\int -x^{3}\mathrm{d}x+\int 2x\mathrm{d}x
Cəm qiymətini hədbəhəd inteqrasiya edin.
\int x^{5}\mathrm{d}x-\int x^{3}\mathrm{d}x+2\int x\mathrm{d}x
Hər bir həddə konstantı faktorlara ayırın.
\frac{x^{6}}{6}-\int x^{3}\mathrm{d}x+2\int x\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} tarixdən etibarən k\neq -1 üçün \int x^{5}\mathrm{d}x-i \frac{x^{6}}{6} ilə əvəzləyin.
\frac{x^{6}}{6}-\frac{x^{4}}{4}+2\int x\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} tarixdən etibarən k\neq -1 üçün \int x^{3}\mathrm{d}x-i \frac{x^{4}}{4} ilə əvəzləyin. -1 ədədini \frac{x^{4}}{4} dəfə vurun.
\frac{x^{6}}{6}-\frac{x^{4}}{4}+x^{2}
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} tarixdən etibarən k\neq -1 üçün \int x\mathrm{d}x-i \frac{x^{2}}{2} ilə əvəzləyin. 2 ədədini \frac{x^{2}}{2} dəfə vurun.
\frac{2^{6}}{6}-\frac{2^{4}}{4}+2^{2}-\left(\frac{\left(-1\right)^{6}}{6}-\frac{\left(-1\right)^{4}}{4}+\left(-1\right)^{2}\right)
İnteqrasiyasının yuxarı limitində qiymətləndirilən ifadənin ibtidaisindən inteqrasiyanın aşağı limitində qiymətləndirilən ibtidai çıxıldıqda müəyyən inteqral əmələ gəlir.
\frac{39}{4}
Sadələşdirin.
Nümunələr
Quadratik tənlik
{ x } ^ { 2 } - 4 x - 5 = 0
Triqonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Xətti tənlik
y = 3x + 4
Arifmetika
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eyni vaxtda tənlik
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferensiallaşdırma
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İnteqrasiya
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitlər
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}