Qiymətləndir
2H
H ilə əlaqədar diferensiallaşdırın
2
Paylaş
Panoya köçürüldü
\int H\cos(x)\mathrm{d}x
Qeyri-müəyyən inteqralı hesablayın.
H\int \cos(x)\mathrm{d}x
\int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x istifadə edərək konstantı faktorlara ayırın.
H\sin(x)
Nəticə almaq üçün ümumi inteqrallar cədvəlindən \int \cos(H)\mathrm{d}H=\sin(H)-i istifadə edin.
H\sin(\frac{1}{2}\pi )-H\sin(-\frac{1}{2}\pi )
İnteqrasiyasının yuxarı limitində qiymətləndirilən ifadənin ibtidaisindən inteqrasiyanın aşağı limitində qiymətləndirilən ibtidai çıxıldıqda müəyyən inteqral əmələ gəlir.
2H
Sadələşdirin.
Nümunələr
Quadratik tənlik
{ x } ^ { 2 } - 4 x - 5 = 0
Triqonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Xətti tənlik
y = 3x + 4
Arifmetika
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eyni vaxtda tənlik
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferensiallaşdırma
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İnteqrasiya
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitlər
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}