Əsas məzmuna keç
Qiymətləndir
Tick mark Image
x ilə əlaqədar diferensiallaşdırın
Tick mark Image

Veb Axtarışdan Oxşar Problemlər

Paylaş

\int x^{3}-9x^{2}+27x-27\mathrm{d}x
\left(x-3\right)^{3} genişləndirmək üçün \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} ikitərkibli teoremindən istifadə edin.
\int x^{3}\mathrm{d}x+\int -9x^{2}\mathrm{d}x+\int 27x\mathrm{d}x+\int -27\mathrm{d}x
Cəm qiymətini hədbəhəd inteqrasiya edin.
\int x^{3}\mathrm{d}x-9\int x^{2}\mathrm{d}x+27\int x\mathrm{d}x+\int -27\mathrm{d}x
Hər bir həddə konstantı faktorlara ayırın.
\frac{x^{4}}{4}-9\int x^{2}\mathrm{d}x+27\int x\mathrm{d}x+\int -27\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} tarixdən etibarən k\neq -1 üçün \int x^{3}\mathrm{d}x-i \frac{x^{4}}{4} ilə əvəzləyin.
\frac{x^{4}}{4}-3x^{3}+27\int x\mathrm{d}x+\int -27\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} tarixdən etibarən k\neq -1 üçün \int x^{2}\mathrm{d}x-i \frac{x^{3}}{3} ilə əvəzləyin. -9 ədədini \frac{x^{3}}{3} dəfə vurun.
\frac{x^{4}}{4}-3x^{3}+\frac{27x^{2}}{2}+\int -27\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} tarixdən etibarən k\neq -1 üçün \int x\mathrm{d}x-i \frac{x^{2}}{2} ilə əvəzləyin. 27 ədədini \frac{x^{2}}{2} dəfə vurun.
\frac{x^{4}}{4}-3x^{3}+\frac{27x^{2}}{2}-27x
Ümumi inteqrallar cədvəlinin \int a\mathrm{d}x=ax qaydasını istifadə edərək -27-in inteqralını tapın.
\frac{x^{4}}{4}-3x^{3}+\frac{27x^{2}}{2}-27x+С
Əgər F\left(x\right) f\left(x\right)-nin ibtidaisidirsə, onda f\left(x\right)-ün bütün ibtidailərinin toplusu F\left(x\right)+C ilə verilir. Bunun üçün, C\in \mathrm{R} inteqrasiyasının konstantını nəticəyə əlavə edin.