Əsas məzmuna keç
Qiymətləndir
Tick mark Image
x ilə əlaqədar diferensiallaşdırın
Tick mark Image

Veb Axtarışdan Oxşar Problemlər

Paylaş

\int \left(x^{3}-3x^{2}+3x-1\right)\left(x-2\right)\mathrm{d}x
\left(x-1\right)^{3} genişləndirmək üçün \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} ikitərkibli teoremindən istifadə edin.
\int x^{4}-5x^{3}+9x^{2}-7x+2\mathrm{d}x
x^{3}-3x^{2}+3x-1 ədədini x-2 vurmaq üçün paylama xüsusiyyətindən istifadə edin və oxşar terminləri birləşdirin.
\int x^{4}\mathrm{d}x+\int -5x^{3}\mathrm{d}x+\int 9x^{2}\mathrm{d}x+\int -7x\mathrm{d}x+\int 2\mathrm{d}x
Cəm qiymətini hədbəhəd inteqrasiya edin.
\int x^{4}\mathrm{d}x-5\int x^{3}\mathrm{d}x+9\int x^{2}\mathrm{d}x-7\int x\mathrm{d}x+\int 2\mathrm{d}x
Hər bir həddə konstantı faktorlara ayırın.
\frac{x^{5}}{5}-5\int x^{3}\mathrm{d}x+9\int x^{2}\mathrm{d}x-7\int x\mathrm{d}x+\int 2\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} tarixdən etibarən k\neq -1 üçün \int x^{4}\mathrm{d}x-i \frac{x^{5}}{5} ilə əvəzləyin.
\frac{x^{5}}{5}-\frac{5x^{4}}{4}+9\int x^{2}\mathrm{d}x-7\int x\mathrm{d}x+\int 2\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} tarixdən etibarən k\neq -1 üçün \int x^{3}\mathrm{d}x-i \frac{x^{4}}{4} ilə əvəzləyin. -5 ədədini \frac{x^{4}}{4} dəfə vurun.
\frac{x^{5}}{5}-\frac{5x^{4}}{4}+3x^{3}-7\int x\mathrm{d}x+\int 2\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} tarixdən etibarən k\neq -1 üçün \int x^{2}\mathrm{d}x-i \frac{x^{3}}{3} ilə əvəzləyin. 9 ədədini \frac{x^{3}}{3} dəfə vurun.
\frac{x^{5}}{5}-\frac{5x^{4}}{4}+3x^{3}-\frac{7x^{2}}{2}+\int 2\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} tarixdən etibarən k\neq -1 üçün \int x\mathrm{d}x-i \frac{x^{2}}{2} ilə əvəzləyin. -7 ədədini \frac{x^{2}}{2} dəfə vurun.
\frac{x^{5}}{5}-\frac{5x^{4}}{4}+3x^{3}-\frac{7x^{2}}{2}+2x
Ümumi inteqrallar cədvəlinin \int a\mathrm{d}x=ax qaydasını istifadə edərək 2-in inteqralını tapın.
-\frac{7x^{2}}{2}+2x+3x^{3}-\frac{5x^{4}}{4}+\frac{x^{5}}{5}
Sadələşdirin.
-\frac{7x^{2}}{2}+2x+3x^{3}-\frac{5x^{4}}{4}+\frac{x^{5}}{5}+С
Əgər F\left(x\right) f\left(x\right)-nin ibtidaisidirsə, onda f\left(x\right)-ün bütün ibtidailərinin toplusu F\left(x\right)+C ilə verilir. Bunun üçün, C\in \mathrm{R} inteqrasiyasının konstantını nəticəyə əlavə edin.