Əsas məzmuna keç
Qiymətləndir
Tick mark Image
x ilə əlaqədar diferensiallaşdırın
Tick mark Image

Paylaş

\frac{\int \ln(2xx)\mathrm{d}x}{\ln(e)}
\int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x istifadə edərək konstantı faktorlara ayırın.
\frac{x\left(\ln(2)+\ln(x^{2})-2\right)}{\ln(e)}
Sadələşdirin.
x\left(\ln(2)+\ln(x^{2})-2\right)
Sadələşdirin.
x\left(\ln(2)+\ln(x^{2})-2\right)+С
Əgər F\left(x\right) f\left(x\right)-nin ibtidaisidirsə, onda f\left(x\right)-ün bütün ibtidailərinin toplusu F\left(x\right)+C ilə verilir. Bunun üçün, C\in \mathrm{R} inteqrasiyasının konstantını nəticəyə əlavə edin.