x üçün həll et
x=-\frac{77y}{18}+\frac{875}{3}
y üçün həll et
y=-\frac{18x}{77}+\frac{750}{11}
Qrafik
Paylaş
Panoya köçürüldü
120x-35000=-\frac{1540}{3}y
Hər iki tərəfdən \frac{1540}{3}y çıxın. Sıfırdan istənilən şeyi çıxdıqda mənfisi alınır.
120x=-\frac{1540}{3}y+35000
35000 hər iki tərəfə əlavə edin.
120x=-\frac{1540y}{3}+35000
Tənlik standart formadadır.
\frac{120x}{120}=\frac{-\frac{1540y}{3}+35000}{120}
Hər iki tərəfi 120 rəqəminə bölün.
x=\frac{-\frac{1540y}{3}+35000}{120}
120 ədədinə bölmək 120 ədədinə vurmanı qaytarır.
x=-\frac{77y}{18}+\frac{875}{3}
-\frac{1540y}{3}+35000 ədədini 120 ədədinə bölün.
\frac{1540}{3}y-35000=-120x
Hər iki tərəfdən 120x çıxın. Sıfırdan istənilən şeyi çıxdıqda mənfisi alınır.
\frac{1540}{3}y=-120x+35000
35000 hər iki tərəfə əlavə edin.
\frac{1540}{3}y=35000-120x
Tənlik standart formadadır.
\frac{\frac{1540}{3}y}{\frac{1540}{3}}=\frac{35000-120x}{\frac{1540}{3}}
Tənliyin hər iki tərəfini \frac{1540}{3} kəsrinə bölün, bu kəsrin tərsinin hər iki tərəfini vurmaqla eynidir.
y=\frac{35000-120x}{\frac{1540}{3}}
\frac{1540}{3} ədədinə bölmək \frac{1540}{3} ədədinə vurmanı qaytarır.
y=-\frac{18x}{77}+\frac{750}{11}
-120x+35000 ədədini \frac{1540}{3} kəsrinin tərsinə vurmaqla -120x+35000 ədədini \frac{1540}{3} kəsrinə bölün.
Nümunələr
Quadratik tənlik
{ x } ^ { 2 } - 4 x - 5 = 0
Triqonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Xətti tənlik
y = 3x + 4
Arifmetika
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eyni vaxtda tənlik
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferensiallaşdırma
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İnteqrasiya
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitlər
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}