y üçün həll et
y = -\frac{17}{7} = -2\frac{3}{7} \approx -2,428571429
Qrafik
Paylaş
Panoya köçürüldü
2\left(y-1\right)-12=3\left(3y+1\right)
6 ilə tənliyin hər iki tərəfini artırın, ən aşağı ümumi vuran 3,2 olmalıdır.
2y-2-12=3\left(3y+1\right)
2 ədədini y-1 vurmaq üçün paylama qanunundan istifadə edin.
2y-14=3\left(3y+1\right)
-14 almaq üçün -2 12 çıxın.
2y-14=9y+3
3 ədədini 3y+1 vurmaq üçün paylama qanunundan istifadə edin.
2y-14-9y=3
Hər iki tərəfdən 9y çıxın.
-7y-14=3
-7y almaq üçün 2y və -9y birləşdirin.
-7y=3+14
14 hər iki tərəfə əlavə edin.
-7y=17
17 almaq üçün 3 və 14 toplayın.
y=\frac{17}{-7}
Hər iki tərəfi -7 rəqəminə bölün.
y=-\frac{17}{7}
\frac{17}{-7} kəsri mənfi işarəni çıxmaqla -\frac{17}{7} kimi yenidən yazıla bilər.
Nümunələr
Quadratik tənlik
{ x } ^ { 2 } - 4 x - 5 = 0
Triqonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Xətti tənlik
y = 3x + 4
Arifmetika
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eyni vaxtda tənlik
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferensiallaşdırma
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İnteqrasiya
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitlər
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}