x üçün həll et
x=-5
Qrafik
Paylaş
Panoya köçürüldü
\left(x+4\right)\left(x+3\right)=\left(x+7\right)\left(x+6\right)
Sıfıra bölmə müəyyən edilmədiyi üçün x dəyişəni -7,-4 ədədlərindən hər hansı birinə bərabər ola bilməz. \left(x+4\right)\left(x+7\right) ilə tənliyin hər iki tərəfini artırın, ən aşağı ümumi vuran x+7,x+4 olmalıdır.
x^{2}+7x+12=\left(x+7\right)\left(x+6\right)
x+4 ədədini x+3 vurmaq üçün paylama xüsusiyyətindən istifadə edin və oxşar terminləri birləşdirin.
x^{2}+7x+12=x^{2}+13x+42
x+7 ədədini x+6 vurmaq üçün paylama xüsusiyyətindən istifadə edin və oxşar terminləri birləşdirin.
x^{2}+7x+12-x^{2}=13x+42
Hər iki tərəfdən x^{2} çıxın.
7x+12=13x+42
0 almaq üçün x^{2} və -x^{2} birləşdirin.
7x+12-13x=42
Hər iki tərəfdən 13x çıxın.
-6x+12=42
-6x almaq üçün 7x və -13x birləşdirin.
-6x=42-12
Hər iki tərəfdən 12 çıxın.
-6x=30
30 almaq üçün 42 12 çıxın.
x=\frac{30}{-6}
Hər iki tərəfi -6 rəqəminə bölün.
x=-5
-5 almaq üçün 30 -6 bölün.
Nümunələr
Quadratik tənlik
{ x } ^ { 2 } - 4 x - 5 = 0
Triqonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Xətti tənlik
y = 3x + 4
Arifmetika
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eyni vaxtda tənlik
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferensiallaşdırma
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İnteqrasiya
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitlər
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}