Əsas məzmuna keç
Qiymətləndir
Tick mark Image
x ilə əlaqədar diferensiallaşdırın
Tick mark Image

Veb Axtarışdan Oxşar Problemlər

Paylaş

\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x^{2}x^{2}}{x^{2}}+\frac{1}{x^{2}}}{x-\frac{1}{x}})
İfadələr əlavə etmək və ya çıxmaq məqsədilə məxrəclərini eyniləşdirmək üçün onları genişləndirin. x^{2} ədədini \frac{x^{2}}{x^{2}} dəfə vurun.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x^{2}x^{2}+1}{x^{2}}}{x-\frac{1}{x}})
\frac{x^{2}x^{2}}{x^{2}} və \frac{1}{x^{2}} eyni göstəriciyə malikdir, onların surətlərini əlavə etməklə onları əlavə edin.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x^{4}+1}{x^{2}}}{x-\frac{1}{x}})
x^{2}x^{2}+1 ifadəsində vurma əməliyyatları aparın.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x^{4}+1}{x^{2}}}{\frac{xx}{x}-\frac{1}{x}})
İfadələr əlavə etmək və ya çıxmaq məqsədilə məxrəclərini eyniləşdirmək üçün onları genişləndirin. x ədədini \frac{x}{x} dəfə vurun.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x^{4}+1}{x^{2}}}{\frac{xx-1}{x}})
\frac{xx}{x} və \frac{1}{x} eyni göstəriciyə malikdir, onların surətlərini çıxarmaqla onları çıxarın.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x^{4}+1}{x^{2}}}{\frac{x^{2}-1}{x}})
xx-1 ifadəsində vurma əməliyyatları aparın.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(x^{4}+1\right)x}{x^{2}\left(x^{2}-1\right)})
\frac{x^{4}+1}{x^{2}} ədədini \frac{x^{2}-1}{x} kəsrinin tərsinə vurmaqla \frac{x^{4}+1}{x^{2}} ədədini \frac{x^{2}-1}{x} kəsrinə bölün.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{4}+1}{x\left(x^{2}-1\right)})
Həm surət, həm də məxrəcdən x ədədini ixtisar edin.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{4}+1}{x^{3}-x})
x ədədini x^{2}-1 vurmaq üçün paylama qanunundan istifadə edin.
\frac{\left(x^{3}-x^{1}\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{4}+1)-\left(x^{4}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}-x^{1})}{\left(x^{3}-x^{1}\right)^{2}}
İstənilən diferensial funksiyalar üçün iki funksiyanın nisbətinin törəməsi məxrəci surətin törəməsinə vurub surətin məxrəcin törəməsinə vurulmasından çıxmaqla alınır, hamısı kvadrat məxrəcə bölünür.
\frac{\left(x^{3}-x^{1}\right)\times 4x^{4-1}-\left(x^{4}+1\right)\left(3x^{3-1}-x^{1-1}\right)}{\left(x^{3}-x^{1}\right)^{2}}
Polinomun törəməsi onun həddlərinin törəməsinin cəmidir. İstənilən konstant həddin törəməsi 0-dır. ax^{n} törəməsi nax^{n-1}-dir.
\frac{\left(x^{3}-x^{1}\right)\times 4x^{3}-\left(x^{4}+1\right)\left(3x^{2}-x^{0}\right)}{\left(x^{3}-x^{1}\right)^{2}}
Sadələşdirin.
\frac{x^{3}\times 4x^{3}-x^{1}\times 4x^{3}-\left(x^{4}+1\right)\left(3x^{2}-x^{0}\right)}{\left(x^{3}-x^{1}\right)^{2}}
x^{3}-x^{1} ədədini 4x^{3} dəfə vurun.
\frac{x^{3}\times 4x^{3}-x^{1}\times 4x^{3}-\left(x^{4}\times 3x^{2}+x^{4}\left(-1\right)x^{0}+3x^{2}-x^{0}\right)}{\left(x^{3}-x^{1}\right)^{2}}
x^{4}+1 ədədini 3x^{2}-x^{0} dəfə vurun.
\frac{4x^{3+3}-4x^{1+3}-\left(3x^{4+2}-x^{4}+3x^{2}-x^{0}\right)}{\left(x^{3}-x^{1}\right)^{2}}
Eyni əsasın qüvvətlərini vurmaq üçün onların eksponentlərini toplayın.
\frac{4x^{6}-4x^{4}-\left(3x^{6}-x^{4}+3x^{2}-x^{0}\right)}{\left(x^{3}-x^{1}\right)^{2}}
Sadələşdirin.
\frac{x^{6}-3x^{4}-3x^{2}-\left(-x^{0}\right)}{\left(x^{3}-x^{1}\right)^{2}}
Həddlər kimi birləşdirin.
\frac{x^{6}-3x^{4}-3x^{2}-\left(-x^{0}\right)}{\left(x^{3}-x\right)^{2}}
İstənilən şərt üçün t, t^{1}=t.
\frac{x^{6}-3x^{4}-3x^{2}-\left(-1\right)}{\left(x^{3}-x\right)^{2}}
İstənilən şərt üçün t 0 başqa, t^{0}=1.