Əsas məzmuna keç
Qiymətləndir
Tick mark Image
x ilə əlaqədar diferensiallaşdırın
Tick mark Image
Qrafik

Veb Axtarışdan Oxşar Problemlər

Paylaş

\frac{ax}{\left(x+2\right)\left(2x-1\right)}
Surəti surətə və məxrəci məxrəcə vurmaqla \frac{x}{2x-1} kəsrini \frac{a}{x+2} dəfə vurun.
\frac{ax}{2x^{2}-x+4x-2}
Hr bir x+2 surətini hər bir 2x-1 surətinə vurmaqla bölüşdürmə xüsusiyyətini tətbiq edin.
\frac{ax}{2x^{2}+3x-2}
3x almaq üçün -x və 4x birləşdirin.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{ax}{\left(x+2\right)\left(2x-1\right)})
Surəti surətə və məxrəci məxrəcə vurmaqla \frac{x}{2x-1} kəsrini \frac{a}{x+2} dəfə vurun.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{ax}{2x^{2}-x+4x-2})
Hr bir x+2 surətini hər bir 2x-1 surətinə vurmaqla bölüşdürmə xüsusiyyətini tətbiq edin.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{ax}{2x^{2}+3x-2})
3x almaq üçün -x və 4x birləşdirin.
\frac{\left(2x^{2}+3x^{1}-2\right)\frac{\mathrm{d}}{\mathrm{d}x}(ax^{1})-ax^{1}\frac{\mathrm{d}}{\mathrm{d}x}(2x^{2}+3x^{1}-2)}{\left(2x^{2}+3x^{1}-2\right)^{2}}
İstənilən diferensial funksiyalar üçün iki funksiyanın nisbətinin törəməsi məxrəci surətin törəməsinə vurub surətin məxrəcin törəməsinə vurulmasından çıxmaqla alınır, hamısı kvadrat məxrəcə bölünür.
\frac{\left(2x^{2}+3x^{1}-2\right)ax^{1-1}-ax^{1}\left(2\times 2x^{2-1}+3x^{1-1}\right)}{\left(2x^{2}+3x^{1}-2\right)^{2}}
Polinomun törəməsi onun həddlərinin törəməsinin cəmidir. İstənilən konstant həddin törəməsi 0-dır. ax^{n} törəməsi nax^{n-1}-dir.
\frac{\left(2x^{2}+3x^{1}-2\right)ax^{0}-ax^{1}\left(4x^{1}+3x^{0}\right)}{\left(2x^{2}+3x^{1}-2\right)^{2}}
Sadələşdirin.
\frac{2x^{2}ax^{0}+3x^{1}ax^{0}-2ax^{0}-ax^{1}\left(4x^{1}+3x^{0}\right)}{\left(2x^{2}+3x^{1}-2\right)^{2}}
2x^{2}+3x^{1}-2 ədədini ax^{0} dəfə vurun.
\frac{2x^{2}ax^{0}+3x^{1}ax^{0}-2ax^{0}-\left(ax^{1}\times 4x^{1}+ax^{1}\times 3x^{0}\right)}{\left(2x^{2}+3x^{1}-2\right)^{2}}
ax^{1} ədədini 4x^{1}+3x^{0} dəfə vurun.
\frac{2ax^{2}+3ax^{1}-2ax^{0}-\left(a\times 4x^{1+1}+a\times 3x^{1}\right)}{\left(2x^{2}+3x^{1}-2\right)^{2}}
Eyni əsasın qüvvətlərini vurmaq üçün onların eksponentlərini toplayın.
\frac{2ax^{2}+3ax^{1}+\left(-2a\right)x^{0}-\left(4ax^{2}+3ax^{1}\right)}{\left(2x^{2}+3x^{1}-2\right)^{2}}
Sadələşdirin.
\frac{\left(-2a\right)x^{2}+\left(-2a\right)x^{0}}{\left(2x^{2}+3x^{1}-2\right)^{2}}
Həddlər kimi birləşdirin.
\frac{\left(-2a\right)x^{2}+\left(-2a\right)x^{0}}{\left(2x^{2}+3x-2\right)^{2}}
İstənilən şərt üçün t, t^{1}=t.
\frac{\left(-2a\right)x^{2}+\left(-2a\right)\times 1}{\left(2x^{2}+3x-2\right)^{2}}
İstənilən şərt üçün t 0 başqa, t^{0}=1.
\frac{\left(-2a\right)x^{2}-2a}{\left(2x^{2}+3x-2\right)^{2}}
İstənilən şərt üçün t, t\times 1=t və 1t=t.