Əsas məzmuna keç
x üçün həll et
Tick mark Image
x üçün həll et (complex solution)
Tick mark Image
Qrafik

Veb Axtarışdan Oxşar Problemlər

Paylaş

\left(\frac{1}{5}\right)^{x+1}=125
Tənliyi həll etmək üçün eksponentlər və loqarifmalar qaydasından istifadə edin.
\log(\left(\frac{1}{5}\right)^{x+1})=\log(125)
Tənliyin hər iki tərəfinin loqarifmasını aparın.
\left(x+1\right)\log(\frac{1}{5})=\log(125)
Qüvvətə yüksəldilmiş ədədin loqarifması ədədin loqarifmasının qüvvət dövrünə bərabədir.
x+1=\frac{\log(125)}{\log(\frac{1}{5})}
Hər iki tərəfi \log(\frac{1}{5}) rəqəminə bölün.
x+1=\log_{\frac{1}{5}}\left(125\right)
Baza düsturunun dəyişdirilməsi ilə \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
x=-3-1
Tənliyin hər iki tərəfindən 1 çıxın.