Əsas məzmuna keç
Qiymətləndir
Tick mark Image
Amil
Tick mark Image

Veb Axtarışdan Oxşar Problemlər

Paylaş

\frac{1+\frac{1}{\frac{2}{2}+\frac{1}{2}}}{1-\frac{1}{1-\frac{1}{2}}}-\frac{2\times \frac{3}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
1 ədədini \frac{2}{2} kəsrinə çevirin.
\frac{1+\frac{1}{\frac{2+1}{2}}}{1-\frac{1}{1-\frac{1}{2}}}-\frac{2\times \frac{3}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
\frac{2}{2} və \frac{1}{2} eyni göstəriciyə malikdir, onların surətlərini əlavə etməklə onları əlavə edin.
\frac{1+\frac{1}{\frac{3}{2}}}{1-\frac{1}{1-\frac{1}{2}}}-\frac{2\times \frac{3}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
3 almaq üçün 2 və 1 toplayın.
\frac{1+1\times \frac{2}{3}}{1-\frac{1}{1-\frac{1}{2}}}-\frac{2\times \frac{3}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
1 ədədini \frac{3}{2} kəsrinin tərsinə vurmaqla 1 ədədini \frac{3}{2} kəsrinə bölün.
\frac{1+\frac{2}{3}}{1-\frac{1}{1-\frac{1}{2}}}-\frac{2\times \frac{3}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
\frac{2}{3} almaq üçün 1 və \frac{2}{3} vurun.
\frac{\frac{3}{3}+\frac{2}{3}}{1-\frac{1}{1-\frac{1}{2}}}-\frac{2\times \frac{3}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
1 ədədini \frac{3}{3} kəsrinə çevirin.
\frac{\frac{3+2}{3}}{1-\frac{1}{1-\frac{1}{2}}}-\frac{2\times \frac{3}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
\frac{3}{3} və \frac{2}{3} eyni göstəriciyə malikdir, onların surətlərini əlavə etməklə onları əlavə edin.
\frac{\frac{5}{3}}{1-\frac{1}{1-\frac{1}{2}}}-\frac{2\times \frac{3}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
5 almaq üçün 3 və 2 toplayın.
\frac{\frac{5}{3}}{1-\frac{1}{\frac{2}{2}-\frac{1}{2}}}-\frac{2\times \frac{3}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
1 ədədini \frac{2}{2} kəsrinə çevirin.
\frac{\frac{5}{3}}{1-\frac{1}{\frac{2-1}{2}}}-\frac{2\times \frac{3}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
\frac{2}{2} və \frac{1}{2} eyni göstəriciyə malikdir, onların surətlərini çıxarmaqla onları çıxarın.
\frac{\frac{5}{3}}{1-\frac{1}{\frac{1}{2}}}-\frac{2\times \frac{3}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
1 almaq üçün 2 1 çıxın.
\frac{\frac{5}{3}}{1-1\times 2}-\frac{2\times \frac{3}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
1 ədədini \frac{1}{2} kəsrinin tərsinə vurmaqla 1 ədədini \frac{1}{2} kəsrinə bölün.
\frac{\frac{5}{3}}{1-2}-\frac{2\times \frac{3}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
2 almaq üçün 1 və 2 vurun.
\frac{\frac{5}{3}}{-1}-\frac{2\times \frac{3}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
-1 almaq üçün 1 2 çıxın.
\frac{5}{3\left(-1\right)}-\frac{2\times \frac{3}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
\frac{\frac{5}{3}}{-1} vahid kəsr kimi ifadə edin.
\frac{5}{-3}-\frac{2\times \frac{3}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
-3 almaq üçün 3 və -1 vurun.
-\frac{5}{3}-\frac{2\times \frac{3}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
\frac{5}{-3} kəsri mənfi işarəni çıxmaqla -\frac{5}{3} kimi yenidən yazıla bilər.
-\frac{5}{3}-\frac{\frac{2\times 3}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
2\times \frac{3}{4} vahid kəsr kimi ifadə edin.
-\frac{5}{3}-\frac{\frac{6}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
6 almaq üçün 2 və 3 vurun.
-\frac{5}{3}-\frac{\frac{3}{2}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
2 çıxarmaqla və ləğv etməklə ən aşağı həddlərə gətirərək \frac{6}{4} kəsrini azaldın.
-\frac{5}{3}-\frac{\frac{3}{2}-\frac{8+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
8 almaq üçün 2 və 4 vurun.
-\frac{5}{3}-\frac{\frac{3}{2}-\frac{11}{4}}{1+\frac{1}{1-\frac{3}{4}}}
11 almaq üçün 8 və 3 toplayın.
-\frac{5}{3}-\frac{\frac{6}{4}-\frac{11}{4}}{1+\frac{1}{1-\frac{3}{4}}}
2 və 4 ədədinin ən az ortaq çoxluğu 4 ədədidir. 4 məxrəci ilə \frac{3}{2} və \frac{11}{4} ədədlərini kəsrə çevirin.
-\frac{5}{3}-\frac{\frac{6-11}{4}}{1+\frac{1}{1-\frac{3}{4}}}
\frac{6}{4} və \frac{11}{4} eyni göstəriciyə malikdir, onların surətlərini çıxarmaqla onları çıxarın.
-\frac{5}{3}-\frac{-\frac{5}{4}}{1+\frac{1}{1-\frac{3}{4}}}
-5 almaq üçün 6 11 çıxın.
-\frac{5}{3}-\frac{-\frac{5}{4}}{1+\frac{1}{\frac{4}{4}-\frac{3}{4}}}
1 ədədini \frac{4}{4} kəsrinə çevirin.
-\frac{5}{3}-\frac{-\frac{5}{4}}{1+\frac{1}{\frac{4-3}{4}}}
\frac{4}{4} və \frac{3}{4} eyni göstəriciyə malikdir, onların surətlərini çıxarmaqla onları çıxarın.
-\frac{5}{3}-\frac{-\frac{5}{4}}{1+\frac{1}{\frac{1}{4}}}
1 almaq üçün 4 3 çıxın.
-\frac{5}{3}-\frac{-\frac{5}{4}}{1+1\times 4}
1 ədədini \frac{1}{4} kəsrinin tərsinə vurmaqla 1 ədədini \frac{1}{4} kəsrinə bölün.
-\frac{5}{3}-\frac{-\frac{5}{4}}{1+4}
4 almaq üçün 1 və 4 vurun.
-\frac{5}{3}-\frac{-\frac{5}{4}}{5}
5 almaq üçün 1 və 4 toplayın.
-\frac{5}{3}-\frac{-5}{4\times 5}
\frac{-\frac{5}{4}}{5} vahid kəsr kimi ifadə edin.
-\frac{5}{3}-\frac{-5}{20}
20 almaq üçün 4 və 5 vurun.
-\frac{5}{3}-\left(-\frac{1}{4}\right)
5 çıxarmaqla və ləğv etməklə ən aşağı həddlərə gətirərək \frac{-5}{20} kəsrini azaldın.
-\frac{5}{3}+\frac{1}{4}
-\frac{1}{4} rəqəminin əksi budur: \frac{1}{4}.
-\frac{20}{12}+\frac{3}{12}
3 və 4 ədədinin ən az ortaq çoxluğu 12 ədədidir. 12 məxrəci ilə -\frac{5}{3} və \frac{1}{4} ədədlərini kəsrə çevirin.
\frac{-20+3}{12}
-\frac{20}{12} və \frac{3}{12} eyni göstəriciyə malikdir, onların surətlərini əlavə etməklə onları əlavə edin.
-\frac{17}{12}
-17 almaq üçün -20 və 3 toplayın.