Qiymətləndir
-x+4-\frac{4}{x}+\frac{5}{x^{2}}-\frac{1}{x^{3}}
Genişləndir
-x+4-\frac{4}{x}+\frac{5}{x^{2}}-\frac{1}{x^{3}}
Qrafik
Paylaş
Panoya köçürüldü
\frac{\left(\frac{2x}{x}+\frac{1}{x}\right)^{2}}{1+x}-\left(1-\frac{1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
İfadələr əlavə etmək və ya çıxmaq məqsədilə məxrəclərini eyniləşdirmək üçün onları genişləndirin. 2 ədədini \frac{x}{x} dəfə vurun.
\frac{\left(\frac{2x+1}{x}\right)^{2}}{1+x}-\left(1-\frac{1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
\frac{2x}{x} və \frac{1}{x} eyni göstəriciyə malikdir, onların surətlərini əlavə etməklə onları əlavə edin.
\frac{\frac{\left(2x+1\right)^{2}}{x^{2}}}{1+x}-\left(1-\frac{1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
\frac{2x+1}{x} ifadəsini qüvvətə qaldırmaq üçün həm surəti, həm də məxrəci qüvvətə qaldırın və sonra bölün.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\left(1-\frac{1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
\frac{\frac{\left(2x+1\right)^{2}}{x^{2}}}{1+x} vahid kəsr kimi ifadə edin.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\left(\frac{x}{x}-\frac{1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
İfadələr əlavə etmək və ya çıxmaq məqsədilə məxrəclərini eyniləşdirmək üçün onları genişləndirin. 1 ədədini \frac{x}{x} dəfə vurun.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\left(\frac{x-1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
\frac{x}{x} və \frac{1}{x} eyni göstəriciyə malikdir, onların surətlərini çıxarmaqla onları çıxarın.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}}{x^{2}}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
\frac{x-1}{x} ifadəsini qüvvətə qaldırmaq üçün həm surəti, həm də məxrəci qüvvətə qaldırın və sonra bölün.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}}{x^{2}}\left(\frac{\left(x-2\right)x}{x}+\frac{1}{x}\right)-\frac{2x+1}{x^{2}+x}
İfadələr əlavə etmək və ya çıxmaq məqsədilə məxrəclərini eyniləşdirmək üçün onları genişləndirin. x-2 ədədini \frac{x}{x} dəfə vurun.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}}{x^{2}}\times \frac{\left(x-2\right)x+1}{x}-\frac{2x+1}{x^{2}+x}
\frac{\left(x-2\right)x}{x} və \frac{1}{x} eyni göstəriciyə malikdir, onların surətlərini əlavə etməklə onları əlavə edin.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}}{x^{2}}\times \frac{x^{2}-2x+1}{x}-\frac{2x+1}{x^{2}+x}
\left(x-2\right)x+1 ifadəsində vurma əməliyyatları aparın.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}\left(x^{2}-2x+1\right)}{x^{2}x}-\frac{2x+1}{x^{2}+x}
Surəti surətə və məxrəci məxrəcə vurmaqla \frac{x^{2}-2x+1}{x} kəsrini \frac{\left(x-1\right)^{2}}{x^{2}} dəfə vurun.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}\left(x^{2}-2x+1\right)}{x^{3}}-\frac{2x+1}{x^{2}+x}
Eyni əsasdan qüvvətləri vurmaq üçün onun göstəricilərini əlavə edin. 3 almaq üçün 2 və 1 əlavə edin.
\frac{\left(2x+1\right)^{2}x}{\left(x+1\right)x^{3}}-\frac{\left(x-1\right)^{2}\left(x^{2}-2x+1\right)\left(x+1\right)}{\left(x+1\right)x^{3}}-\frac{2x+1}{x^{2}+x}
İfadələr əlavə etmək və ya çıxmaq məqsədilə məxrəclərini eyniləşdirmək üçün onları genişləndirin. x^{2}\left(1+x\right) və x^{3} ədədinin ən az ortaq çoxluğu \left(x+1\right)x^{3} ədədidir. \frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)} ədədini \frac{x}{x} dəfə vurun. \frac{\left(x-1\right)^{2}\left(x^{2}-2x+1\right)}{x^{3}} ədədini \frac{x+1}{x+1} dəfə vurun.
\frac{\left(2x+1\right)^{2}x-\left(x-1\right)^{2}\left(x^{2}-2x+1\right)\left(x+1\right)}{\left(x+1\right)x^{3}}-\frac{2x+1}{x^{2}+x}
\frac{\left(2x+1\right)^{2}x}{\left(x+1\right)x^{3}} və \frac{\left(x-1\right)^{2}\left(x^{2}-2x+1\right)\left(x+1\right)}{\left(x+1\right)x^{3}} eyni göstəriciyə malikdir, onların surətlərini çıxarmaqla onları çıxarın.
\frac{4x^{3}+4x^{2}+x-x^{5}+x^{4}+x^{3}-x^{2}+2x^{4}-2x^{3}-2x^{2}+2x-x^{3}+x^{2}+x-1}{\left(x+1\right)x^{3}}-\frac{2x+1}{x^{2}+x}
\left(2x+1\right)^{2}x-\left(x-1\right)^{2}\left(x^{2}-2x+1\right)\left(x+1\right) ifadəsində vurma əməliyyatları aparın.
\frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}}-\frac{2x+1}{x^{2}+x}
4x^{3}+4x^{2}+x-x^{5}+x^{4}+x^{3}-x^{2}+2x^{4}-2x^{3}-2x^{2}+2x-x^{3}+x^{2}+x-1 ifadəsindəki həddlər kimi birləşdirin.
\frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}}-\frac{2x+1}{x\left(x+1\right)}
x^{2}+x faktorlara ayırın.
\frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}}-\frac{\left(2x+1\right)x^{2}}{\left(x+1\right)x^{3}}
İfadələr əlavə etmək və ya çıxmaq məqsədilə məxrəclərini eyniləşdirmək üçün onları genişləndirin. \left(x+1\right)x^{3} və x\left(x+1\right) ədədinin ən az ortaq çoxluğu \left(x+1\right)x^{3} ədədidir. \frac{2x+1}{x\left(x+1\right)} ədədini \frac{x^{2}}{x^{2}} dəfə vurun.
\frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1-\left(2x+1\right)x^{2}}{\left(x+1\right)x^{3}}
\frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}} və \frac{\left(2x+1\right)x^{2}}{\left(x+1\right)x^{3}} eyni göstəriciyə malikdir, onların surətlərini çıxarmaqla onları çıxarın.
\frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1-2x^{3}-x^{2}}{\left(x+1\right)x^{3}}
2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1-\left(2x+1\right)x^{2} ifadəsində vurma əməliyyatları aparın.
\frac{x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}}
2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1-2x^{3}-x^{2} ifadəsindəki həddlər kimi birləşdirin.
\frac{\left(x+1\right)\left(-x^{4}+4x^{3}-4x^{2}+5x-1\right)}{\left(x+1\right)x^{3}}
\frac{x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}} düsturu ilə artıq vuruqlara ayrılmamış ifadələri vuruqlara ayırın.
\frac{-x^{4}+4x^{3}-4x^{2}+5x-1}{x^{3}}
Həm surət, həm də məxrəcdən x+1 ədədini ixtisar edin.
\frac{\left(\frac{2x}{x}+\frac{1}{x}\right)^{2}}{1+x}-\left(1-\frac{1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
İfadələr əlavə etmək və ya çıxmaq məqsədilə məxrəclərini eyniləşdirmək üçün onları genişləndirin. 2 ədədini \frac{x}{x} dəfə vurun.
\frac{\left(\frac{2x+1}{x}\right)^{2}}{1+x}-\left(1-\frac{1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
\frac{2x}{x} və \frac{1}{x} eyni göstəriciyə malikdir, onların surətlərini əlavə etməklə onları əlavə edin.
\frac{\frac{\left(2x+1\right)^{2}}{x^{2}}}{1+x}-\left(1-\frac{1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
\frac{2x+1}{x} ifadəsini qüvvətə qaldırmaq üçün həm surəti, həm də məxrəci qüvvətə qaldırın və sonra bölün.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\left(1-\frac{1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
\frac{\frac{\left(2x+1\right)^{2}}{x^{2}}}{1+x} vahid kəsr kimi ifadə edin.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\left(\frac{x}{x}-\frac{1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
İfadələr əlavə etmək və ya çıxmaq məqsədilə məxrəclərini eyniləşdirmək üçün onları genişləndirin. 1 ədədini \frac{x}{x} dəfə vurun.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\left(\frac{x-1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
\frac{x}{x} və \frac{1}{x} eyni göstəriciyə malikdir, onların surətlərini çıxarmaqla onları çıxarın.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}}{x^{2}}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
\frac{x-1}{x} ifadəsini qüvvətə qaldırmaq üçün həm surəti, həm də məxrəci qüvvətə qaldırın və sonra bölün.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}}{x^{2}}\left(\frac{\left(x-2\right)x}{x}+\frac{1}{x}\right)-\frac{2x+1}{x^{2}+x}
İfadələr əlavə etmək və ya çıxmaq məqsədilə məxrəclərini eyniləşdirmək üçün onları genişləndirin. x-2 ədədini \frac{x}{x} dəfə vurun.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}}{x^{2}}\times \frac{\left(x-2\right)x+1}{x}-\frac{2x+1}{x^{2}+x}
\frac{\left(x-2\right)x}{x} və \frac{1}{x} eyni göstəriciyə malikdir, onların surətlərini əlavə etməklə onları əlavə edin.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}}{x^{2}}\times \frac{x^{2}-2x+1}{x}-\frac{2x+1}{x^{2}+x}
\left(x-2\right)x+1 ifadəsində vurma əməliyyatları aparın.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}\left(x^{2}-2x+1\right)}{x^{2}x}-\frac{2x+1}{x^{2}+x}
Surəti surətə və məxrəci məxrəcə vurmaqla \frac{x^{2}-2x+1}{x} kəsrini \frac{\left(x-1\right)^{2}}{x^{2}} dəfə vurun.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}\left(x^{2}-2x+1\right)}{x^{3}}-\frac{2x+1}{x^{2}+x}
Eyni əsasdan qüvvətləri vurmaq üçün onun göstəricilərini əlavə edin. 3 almaq üçün 2 və 1 əlavə edin.
\frac{\left(2x+1\right)^{2}x}{\left(x+1\right)x^{3}}-\frac{\left(x-1\right)^{2}\left(x^{2}-2x+1\right)\left(x+1\right)}{\left(x+1\right)x^{3}}-\frac{2x+1}{x^{2}+x}
İfadələr əlavə etmək və ya çıxmaq məqsədilə məxrəclərini eyniləşdirmək üçün onları genişləndirin. x^{2}\left(1+x\right) və x^{3} ədədinin ən az ortaq çoxluğu \left(x+1\right)x^{3} ədədidir. \frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)} ədədini \frac{x}{x} dəfə vurun. \frac{\left(x-1\right)^{2}\left(x^{2}-2x+1\right)}{x^{3}} ədədini \frac{x+1}{x+1} dəfə vurun.
\frac{\left(2x+1\right)^{2}x-\left(x-1\right)^{2}\left(x^{2}-2x+1\right)\left(x+1\right)}{\left(x+1\right)x^{3}}-\frac{2x+1}{x^{2}+x}
\frac{\left(2x+1\right)^{2}x}{\left(x+1\right)x^{3}} və \frac{\left(x-1\right)^{2}\left(x^{2}-2x+1\right)\left(x+1\right)}{\left(x+1\right)x^{3}} eyni göstəriciyə malikdir, onların surətlərini çıxarmaqla onları çıxarın.
\frac{4x^{3}+4x^{2}+x-x^{5}+x^{4}+x^{3}-x^{2}+2x^{4}-2x^{3}-2x^{2}+2x-x^{3}+x^{2}+x-1}{\left(x+1\right)x^{3}}-\frac{2x+1}{x^{2}+x}
\left(2x+1\right)^{2}x-\left(x-1\right)^{2}\left(x^{2}-2x+1\right)\left(x+1\right) ifadəsində vurma əməliyyatları aparın.
\frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}}-\frac{2x+1}{x^{2}+x}
4x^{3}+4x^{2}+x-x^{5}+x^{4}+x^{3}-x^{2}+2x^{4}-2x^{3}-2x^{2}+2x-x^{3}+x^{2}+x-1 ifadəsindəki həddlər kimi birləşdirin.
\frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}}-\frac{2x+1}{x\left(x+1\right)}
x^{2}+x faktorlara ayırın.
\frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}}-\frac{\left(2x+1\right)x^{2}}{\left(x+1\right)x^{3}}
İfadələr əlavə etmək və ya çıxmaq məqsədilə məxrəclərini eyniləşdirmək üçün onları genişləndirin. \left(x+1\right)x^{3} və x\left(x+1\right) ədədinin ən az ortaq çoxluğu \left(x+1\right)x^{3} ədədidir. \frac{2x+1}{x\left(x+1\right)} ədədini \frac{x^{2}}{x^{2}} dəfə vurun.
\frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1-\left(2x+1\right)x^{2}}{\left(x+1\right)x^{3}}
\frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}} və \frac{\left(2x+1\right)x^{2}}{\left(x+1\right)x^{3}} eyni göstəriciyə malikdir, onların surətlərini çıxarmaqla onları çıxarın.
\frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1-2x^{3}-x^{2}}{\left(x+1\right)x^{3}}
2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1-\left(2x+1\right)x^{2} ifadəsində vurma əməliyyatları aparın.
\frac{x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}}
2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1-2x^{3}-x^{2} ifadəsindəki həddlər kimi birləşdirin.
\frac{\left(x+1\right)\left(-x^{4}+4x^{3}-4x^{2}+5x-1\right)}{\left(x+1\right)x^{3}}
\frac{x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}} düsturu ilə artıq vuruqlara ayrılmamış ifadələri vuruqlara ayırın.
\frac{-x^{4}+4x^{3}-4x^{2}+5x-1}{x^{3}}
Həm surət, həm də məxrəcdən x+1 ədədini ixtisar edin.
Nümunələr
Quadratik tənlik
{ x } ^ { 2 } - 4 x - 5 = 0
Triqonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Xətti tənlik
y = 3x + 4
Arifmetika
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eyni vaxtda tənlik
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferensiallaşdırma
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İnteqrasiya
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitlər
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}