Əsas məzmuna keç
x üçün həll et
Tick mark Image
Qrafik

Veb Axtarışdan Oxşar Problemlər

Paylaş

x^{2}-2x+1+3x-3<0
\left(x-1\right)^{2} genişləndirmək üçün \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ikitərkibli teoremindən istifadə edin.
x^{2}+x+1-3<0
x almaq üçün -2x və 3x birləşdirin.
x^{2}+x-2<0
-2 almaq üçün 1 3 çıxın.
x^{2}+x-2=0
Fərqi həll etmək üçün sol tərəfi vuruqlara ayırın. Kvadrat polinomu ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) çevirməsindən istifadə etməklə vuranlara ayırmaq mümkün olur, burada x_{1} və x_{2} kvadrat ax^{2}+bx+c=0 tənliyinin həlləridir.
x=\frac{-1±\sqrt{1^{2}-4\times 1\left(-2\right)}}{2}
ax^{2}+bx+c=0 formasının bütün tənliklərini kvadrat düsturdan istifadə etməklə həll etmək olar: kvadrat düsturda \frac{-b±\sqrt{b^{2}-4ac}}{2a}. a üçün 1, b üçün 1, və c üçün -2 əvəzlənsin.
x=\frac{-1±3}{2}
Hesablamalar edin.
x=1 x=-2
± müsbət və ± mənfi olduqda x=\frac{-1±3}{2} tənliyini həll edin.
\left(x-1\right)\left(x+2\right)<0
Əlsə olunmuş həlləri istifadə etməklə, bərabərsizliyi yenidən yazın.
x-1>0 x+2<0
Məhsulun mənfi olması üçün x-1 və x+2 əks işarə ilə verilməlidir. x-1 qiymətinin müsbət və x+2 qiymətinin isə mənfi olması halını nəzərə alın.
x\in \emptyset
Bu istənilən x üçün səhvdir.
x+2>0 x-1<0
x+2 qiymətinin müsbət və x-1 qiymətinin isə mənfi olması halını nəzərə alın.
x\in \left(-2,1\right)
Hər iki fərqi qane edən həll: x\in \left(-2,1\right).
x\in \left(-2,1\right)
Yekun həll əldə olunmuş həllərin birləşməsidir.