Əsas məzmuna keç
Amil
Tick mark Image
Qiymətləndir
Tick mark Image
Qrafik

Veb Axtarışdan Oxşar Problemlər

Paylaş

a+b=-1 ab=-2=-2
Qruplaşdırmaqla ifadəni əmsallarına ayırın. Əvvəlcə ifadə -x^{2}+ax+bx+2 kimi yazılmalıdır. a və b ədədini tapmaq üçün həll ediləcək sistem qurun.
a=1 b=-2
ab mənfi olduğu üçün a və b ədədlərinin əks işarələri var. a+b mənfi olduğu üçün mənfi rəqəmin müsbətdən daha böyük mütləq qiyməti var. Yalnız belə cüt sistem həllidir.
\left(-x^{2}+x\right)+\left(-2x+2\right)
-x^{2}-x+2 \left(-x^{2}+x\right)+\left(-2x+2\right) kimi yenidən yazılsın.
x\left(-x+1\right)+2\left(-x+1\right)
Birinci qrupda x ədədini və ikinci qrupda isə 2 ədədini vurub çıxarın.
\left(-x+1\right)\left(x+2\right)
Paylayıcı xüsusiyyətini istifadə etməklə -x+1 ümumi ifadəsi vurulanlara ayrılsın.
-x^{2}-x+2=0
Kvadrat polinomu ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) çevirməsindən istifadə etməklə vuranlara ayırmaq mümkün olur, burada x_{1} və x_{2} kvadrat ax^{2}+bx+c=0 tənliyinin həlləridir.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)\times 2}}{2\left(-1\right)}
ax^{2}+bx+c=0 formasının bütün tənlikləri kvadratlar düsturundan istifadə edərək həll edilə bilər: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratlar düsturu biri ± toplama olduqda və digəri çıxma olduqda iki həll verir.
x=\frac{-\left(-1\right)±\sqrt{1+4\times 2}}{2\left(-1\right)}
-4 ədədini -1 dəfə vurun.
x=\frac{-\left(-1\right)±\sqrt{1+8}}{2\left(-1\right)}
4 ədədini 2 dəfə vurun.
x=\frac{-\left(-1\right)±\sqrt{9}}{2\left(-1\right)}
1 8 qrupuna əlavə edin.
x=\frac{-\left(-1\right)±3}{2\left(-1\right)}
9 kvadrat kökünü alın.
x=\frac{1±3}{2\left(-1\right)}
-1 rəqəminin əksi budur: 1.
x=\frac{1±3}{-2}
2 ədədini -1 dəfə vurun.
x=\frac{4}{-2}
İndi ± plyus olsa x=\frac{1±3}{-2} tənliyini həll edin. 1 3 qrupuna əlavə edin.
x=-2
4 ədədini -2 ədədinə bölün.
x=-\frac{2}{-2}
İndi ± minus olsa x=\frac{1±3}{-2} tənliyini həll edin. 1 ədədindən 3 ədədini çıxın.
x=1
-2 ədədini -2 ədədinə bölün.
-x^{2}-x+2=-\left(x-\left(-2\right)\right)\left(x-1\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) istifadə etməklə ilkin ifadəni vuruqlara ayırın. x_{1} üçün -2 və x_{2} üçün 1 əvəzləyici.
-x^{2}-x+2=-\left(x+2\right)\left(x-1\right)
p-\left(-q\right) formasının bütün ifadələrini p+q ifadəsinə sadələşdirin.