মুখ্য সমললৈ এৰি যাওক
কাৰক
Tick mark Image
মূল্যায়ন
Tick mark Image

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

a+b=-13 ab=1\times 22=22
এক্সপ্ৰেছনবোৰৰ গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে ৰাশিটো z^{2}+az+bz+22 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
-1,-22 -2,-11
যিহেতু ab যোগাত্মক, সেয়েহে a আৰু bৰ অনুৰূপ সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে a আৰু b দুয়োটাই ঋণাত্মক। যিবোৰ যোৰাই গুণফল 22 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
-1-22=-23 -2-11=-13
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-11 b=-2
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -13।
\left(z^{2}-11z\right)+\left(-2z+22\right)
z^{2}-13z+22ক \left(z^{2}-11z\right)+\left(-2z+22\right) হিচাপে পুনৰ লিখক।
z\left(z-11\right)-2\left(z-11\right)
প্ৰথম গোটত z আৰু দ্বিতীয় গোটত -2ৰ গুণনীয়ক উলিয়াওক।
\left(z-11\right)\left(z-2\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম z-11ৰ গুণনীয়ক উলিয়াওক।
z^{2}-13z+22=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ৰূপান্তৰ ব্যৱহাৰ কৰিলে দ্বিঘাত ত্ৰিপদৰাশি উৎপাদক হ'ব পাৰে, য'ত x_{1} আৰু x_{2} দ্বিঘাত সমীকৰণ ax^{2}+bx+c=0ৰ সমাধান হয়৷
z=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 22}}{2}
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
z=\frac{-\left(-13\right)±\sqrt{169-4\times 22}}{2}
বৰ্গ -13৷
z=\frac{-\left(-13\right)±\sqrt{169-88}}{2}
-4 বাৰ 22 পুৰণ কৰক৷
z=\frac{-\left(-13\right)±\sqrt{81}}{2}
-88 লৈ 169 যোগ কৰক৷
z=\frac{-\left(-13\right)±9}{2}
81-ৰ বৰ্গমূল লওক৷
z=\frac{13±9}{2}
-13ৰ বিপৰীত হৈছে 13৷
z=\frac{22}{2}
এতিয়া ± যোগ হ’লে সমীকৰণ z=\frac{13±9}{2} সমাধান কৰক৷ 9 লৈ 13 যোগ কৰক৷
z=11
2-ৰ দ্বাৰা 22 হৰণ কৰক৷
z=\frac{4}{2}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ z=\frac{13±9}{2} সমাধান কৰক৷ 13-ৰ পৰা 9 বিয়োগ কৰক৷
z=2
2-ৰ দ্বাৰা 4 হৰণ কৰক৷
z^{2}-13z+22=\left(z-11\right)\left(z-2\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যৱহাৰ কৰিলে মূল উপাদান হয়৷ x_{1}ৰ বাবে 11 আৰু x_{2}ৰ বাবে 2 বিকল্প৷