y, x-ৰ বাবে সমাধান কৰক
x=0
y=0
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
y+2x=0
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ উভয় কাষে 2x যোগ কৰক।
y-\frac{x}{2}=0
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা \frac{x}{2} বিয়োগ কৰক৷
2y-x=0
2-ৰ দ্বাৰা সমীকৰণৰ দুয়োটা দিশক পুৰণ কৰক৷
y+2x=0,2y-x=0
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
y+2x=0
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে y পৃথক কৰি yৰ বাবে ইয়াক সমাধান কৰক৷
y=-2x
সমীকৰণৰ দুয়োটা দিশৰ পৰা 2x বিয়োগ কৰক৷
2\left(-2\right)x-x=0
অন্য সমীকৰণত y-ৰ বাবে -2x স্থানাপন কৰক, 2y-x=0৷
-4x-x=0
2 বাৰ -2x পুৰণ কৰক৷
-5x=0
-x লৈ -4x যোগ কৰক৷
x=0
-5-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
y=0
y=-2x-ত x-ৰ বাবে 0-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি y-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
y=0,x=0
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
y+2x=0
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ উভয় কাষে 2x যোগ কৰক।
y-\frac{x}{2}=0
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা \frac{x}{2} বিয়োগ কৰক৷
2y-x=0
2-ৰ দ্বাৰা সমীকৰণৰ দুয়োটা দিশক পুৰণ কৰক৷
y+2x=0,2y-x=0
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}1&2\\2&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}1&2\\2&-1\end{matrix}\right))\left(\begin{matrix}1&2\\2&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&-1\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
\left(\begin{matrix}1&2\\2&-1\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&-1\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&-1\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-2\times 2}&-\frac{2}{-1-2\times 2}\\-\frac{2}{-1-2\times 2}&\frac{1}{-1-2\times 2}\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{2}{5}\\\frac{2}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
y=0,x=0
মেট্ৰিক্স উপাদান y আৰু x নিষ্কাষিত কৰক৷
y+2x=0
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ উভয় কাষে 2x যোগ কৰক।
y-\frac{x}{2}=0
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা \frac{x}{2} বিয়োগ কৰক৷
2y-x=0
2-ৰ দ্বাৰা সমীকৰণৰ দুয়োটা দিশক পুৰণ কৰক৷
y+2x=0,2y-x=0
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
2y+2\times 2x=0,2y-x=0
y আৰু 2y সমান কৰিবৰ বাবে, 2-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 1-ৰ দ্বাৰা পুৰণ কৰক৷
2y+4x=0,2y-x=0
সৰলীকৰণ৷
2y-2y+4x+x=0
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 2y+4x=0-ৰ পৰা 2y-x=0 হৰণ কৰক৷
4x+x=0
-2y লৈ 2y যোগ কৰক৷ চৰ্তাৱলী 2y আৰু -2y সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
5x=0
x লৈ 4x যোগ কৰক৷
x=0
5-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
2y=0
2y-x=0-ত x-ৰ বাবে 0-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি y-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
y=0
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
y=0,x=0
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}