y-ৰ বাবে সমাধান কৰক
y=0
y আৰোপ কৰক
y≔0
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
y=-\frac{3}{2}+\sqrt{\frac{25}{4}-4}
2ৰ পাৱাৰ -2ক গণনা কৰক আৰু 4 লাভ কৰক৷
y=-\frac{3}{2}+\sqrt{\frac{25}{4}-\frac{16}{4}}
4ক ভগ্নাংশ \frac{16}{4}লৈ ৰূপান্তৰ কৰক৷
y=-\frac{3}{2}+\sqrt{\frac{25-16}{4}}
যিহেতু \frac{25}{4} আৰু \frac{16}{4}ৰ একে ডেনোমিনেটৰ আছে, গতিকে সিহঁতক সিহঁতৰ নিউমেৰেটৰ বিয়োগ কৰি বিয়োগ কৰক৷
y=-\frac{3}{2}+\sqrt{\frac{9}{4}}
9 লাভ কৰিবলৈ 25-ৰ পৰা 16 বিয়োগ কৰক৷
y=-\frac{3}{2}+\frac{3}{2}
ভাজকৰ \frac{9}{4} বৰ্গমূলটো বৰ্গমূলৰ \frac{\sqrt{9}}{\sqrt{4}} ভাজক হিচাপে পুনৰ। লব আৰু হৰ দুয়োটাৰে বৰ্গমূল লওক।
y=0
0 লাভ কৰিবৰ বাবে -\frac{3}{2} আৰু \frac{3}{2} যোগ কৰক৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}