মুখ্য সমললৈ এৰি যাওক
কাৰক
Tick mark Image
মূল্যায়ন
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

x^{4}-2x^{2}+1=0
অভিব্যক্তিৰ উৎপাদক উলিয়াবলৈ, সমীকৰণটো সমাধান কৰক য'ত অভিব্যক্তিটো 0ৰ সমান হয়।
±1
ৰেশ্যনেল বৰ্গমূল সূত্ৰৰ দ্বাৰা, এটা বহুপদৰ সকলো ৰেশ্যনেল ৰুট \frac{p}{q}ৰ ৰূপত থাকে, য'ত pএ ধ্ৰুৱক ৰাশি 1ক হৰণ কৰে আৰু qএ প্ৰমুখ গুণাংক 1ক হৰণ কৰে। সকলো প্ৰাৰ্থীৰ সূচী \frac{p}{q}।
x=1
পূৰ্ণ মান অনুসৰি আটাইতকৈ সৰু মানটোৰ পৰা আৰম্ভ কৰি সকলো পূৰ্ণ সংখ্যাৰ এনে এটা বৰ্গমূল বিচাৰি উলিয়াওক। যদি পূৰ্ণ সংখ্যাৰ বৰ্গমূল পোৱা নাযায়, তেন্তে ভগ্নাংশ ব্যৱহাৰ কৰি চাওক।
x^{3}+x^{2}-x-1=0
গুণনীয়কৰ সূত্ৰ অনুসৰি, x-k হৈছে প্ৰত্যেক বৰ্গমূল kৰ বাবে বহুপদৰ এটা গুণনীয়ক। x^{3}+x^{2}-x-1 লাভ কৰিবলৈ x-1ৰ দ্বাৰা x^{4}-2x^{2}+1 হৰণ কৰক৷ অভিব্যক্তিৰ উৎপাদক উলিয়াবলৈ, সমীকৰণটো সমাধান কৰক য'ত অভিব্যক্তিটো 0ৰ সমান হয়।
±1
ৰেশ্যনেল বৰ্গমূল সূত্ৰৰ দ্বাৰা, এটা বহুপদৰ সকলো ৰেশ্যনেল ৰুট \frac{p}{q}ৰ ৰূপত থাকে, য'ত pএ ধ্ৰুৱক ৰাশি -1ক হৰণ কৰে আৰু qএ প্ৰমুখ গুণাংক 1ক হৰণ কৰে। সকলো প্ৰাৰ্থীৰ সূচী \frac{p}{q}।
x=1
পূৰ্ণ মান অনুসৰি আটাইতকৈ সৰু মানটোৰ পৰা আৰম্ভ কৰি সকলো পূৰ্ণ সংখ্যাৰ এনে এটা বৰ্গমূল বিচাৰি উলিয়াওক। যদি পূৰ্ণ সংখ্যাৰ বৰ্গমূল পোৱা নাযায়, তেন্তে ভগ্নাংশ ব্যৱহাৰ কৰি চাওক।
x^{2}+2x+1=0
গুণনীয়কৰ সূত্ৰ অনুসৰি, x-k হৈছে প্ৰত্যেক বৰ্গমূল kৰ বাবে বহুপদৰ এটা গুণনীয়ক। x^{2}+2x+1 লাভ কৰিবলৈ x-1ৰ দ্বাৰা x^{3}+x^{2}-x-1 হৰণ কৰক৷ অভিব্যক্তিৰ উৎপাদক উলিয়াবলৈ, সমীকৰণটো সমাধান কৰক য'ত অভিব্যক্তিটো 0ৰ সমান হয়।
x=\frac{-2±\sqrt{2^{2}-4\times 1\times 1}}{2}
ax^{2}+bx+c=0 প্ৰপত্ৰৰ সকলো সমীকৰণ দ্বিঘাত সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। aৰ বাবে 1ৰ বিকল্প দিয়ক, bৰ বাবে 2, আৰু দ্বিঘাত সূত্ৰত cৰ বাবে 1।
x=\frac{-2±0}{2}
গণনা কৰক৷
x=-1
সমাধান একে হৈছে৷
\left(x-1\right)^{2}\left(x+1\right)^{2}
লাভ কৰা বৰ্গমূলসমূহ ব্যৱহাৰ কৰি উৎপাদক উলিওৱা অভিব্যক্তি পুনৰ লিখক।