মুখ্য সমললৈ এৰি যাওক
কাৰক
Tick mark Image
মূল্যায়ন
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

a+b=-8 ab=1\times 15=15
এক্সপ্ৰেছনবোৰৰ গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে ৰাশিটো x^{2}+ax+bx+15 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
-1,-15 -3,-5
যিহেতু ab যোগাত্মক, সেয়েহে a আৰু bৰ অনুৰূপ সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে a আৰু b দুয়োটাই ঋণাত্মক। যিবোৰ যোৰাই গুণফল 15 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
-1-15=-16 -3-5=-8
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-5 b=-3
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -8।
\left(x^{2}-5x\right)+\left(-3x+15\right)
x^{2}-8x+15ক \left(x^{2}-5x\right)+\left(-3x+15\right) হিচাপে পুনৰ লিখক।
x\left(x-5\right)-3\left(x-5\right)
প্ৰথম গোটত x আৰু দ্বিতীয় গোটত -3ৰ গুণনীয়ক উলিয়াওক।
\left(x-5\right)\left(x-3\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম x-5ৰ গুণনীয়ক উলিয়াওক।
x^{2}-8x+15=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ৰূপান্তৰ ব্যৱহাৰ কৰিলে দ্বিঘাত ত্ৰিপদৰাশি উৎপাদক হ'ব পাৰে, য'ত x_{1} আৰু x_{2} দ্বিঘাত সমীকৰণ ax^{2}+bx+c=0ৰ সমাধান হয়৷
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 15}}{2}
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-\left(-8\right)±\sqrt{64-4\times 15}}{2}
বৰ্গ -8৷
x=\frac{-\left(-8\right)±\sqrt{64-60}}{2}
-4 বাৰ 15 পুৰণ কৰক৷
x=\frac{-\left(-8\right)±\sqrt{4}}{2}
-60 লৈ 64 যোগ কৰক৷
x=\frac{-\left(-8\right)±2}{2}
4-ৰ বৰ্গমূল লওক৷
x=\frac{8±2}{2}
-8ৰ বিপৰীত হৈছে 8৷
x=\frac{10}{2}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{8±2}{2} সমাধান কৰক৷ 2 লৈ 8 যোগ কৰক৷
x=5
2-ৰ দ্বাৰা 10 হৰণ কৰক৷
x=\frac{6}{2}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{8±2}{2} সমাধান কৰক৷ 8-ৰ পৰা 2 বিয়োগ কৰক৷
x=3
2-ৰ দ্বাৰা 6 হৰণ কৰক৷
x^{2}-8x+15=\left(x-5\right)\left(x-3\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যৱহাৰ কৰিলে মূল উপাদান হয়৷ x_{1}ৰ বাবে 5 আৰু x_{2}ৰ বাবে 3 বিকল্প৷