মুখ্য সমললৈ এৰি যাওক
x-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

a+b=-6 ab=5
সমীকৰণ সমাধান কৰিবলৈ সূত্ৰ x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) ব্যৱহাৰ কৰি x^{2}-6x+5ৰ উৎপাদক উলিয়াওক। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
a=-5 b=-1
যিহেতু ab যোগাত্মক, সেয়েহে a আৰু bৰ অনুৰূপ সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে a আৰু b দুয়োটাই ঋণাত্মক। এনেধৰণৰ একমাত্ৰ যোৰা হৈছে ছিষ্টেম সমাধান।
\left(x-5\right)\left(x-1\right)
লাভ কৰা মূল্য ব্যৱহাৰ কৰি উৎপাদক উলিওৱা ৰাশি \left(x+a\right)\left(x+b\right) পুনৰ লিখক।
x=5 x=1
সমীকৰণ উলিয়াবলৈ, x-5=0 আৰু x-1=0 সমাধান কৰক।
a+b=-6 ab=1\times 5=5
সমীকৰণ সমাধান কৰিবলৈ, বাওঁহাতে গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে বাওঁহাতে x^{2}+ax+bx+5 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
a=-5 b=-1
যিহেতু ab যোগাত্মক, সেয়েহে a আৰু bৰ অনুৰূপ সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে a আৰু b দুয়োটাই ঋণাত্মক। এনেধৰণৰ একমাত্ৰ যোৰা হৈছে ছিষ্টেম সমাধান।
\left(x^{2}-5x\right)+\left(-x+5\right)
x^{2}-6x+5ক \left(x^{2}-5x\right)+\left(-x+5\right) হিচাপে পুনৰ লিখক।
x\left(x-5\right)-\left(x-5\right)
প্ৰথম গোটত x আৰু দ্বিতীয় গোটত -1ৰ গুণনীয়ক উলিয়াওক।
\left(x-5\right)\left(x-1\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম x-5ৰ গুণনীয়ক উলিয়াওক।
x=5 x=1
সমীকৰণ উলিয়াবলৈ, x-5=0 আৰু x-1=0 সমাধান কৰক।
x^{2}-6x+5=0
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 5}}{2}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 1, b-ৰ বাবে -6, c-ৰ বাবে 5 চাবষ্টিটিউট৷
x=\frac{-\left(-6\right)±\sqrt{36-4\times 5}}{2}
বৰ্গ -6৷
x=\frac{-\left(-6\right)±\sqrt{36-20}}{2}
-4 বাৰ 5 পুৰণ কৰক৷
x=\frac{-\left(-6\right)±\sqrt{16}}{2}
-20 লৈ 36 যোগ কৰক৷
x=\frac{-\left(-6\right)±4}{2}
16-ৰ বৰ্গমূল লওক৷
x=\frac{6±4}{2}
-6ৰ বিপৰীত হৈছে 6৷
x=\frac{10}{2}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{6±4}{2} সমাধান কৰক৷ 4 লৈ 6 যোগ কৰক৷
x=5
2-ৰ দ্বাৰা 10 হৰণ কৰক৷
x=\frac{2}{2}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{6±4}{2} সমাধান কৰক৷ 6-ৰ পৰা 4 বিয়োগ কৰক৷
x=1
2-ৰ দ্বাৰা 2 হৰণ কৰক৷
x=5 x=1
সমীকৰণটো এতিয়া সমাধান হৈছে৷
x^{2}-6x+5=0
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
x^{2}-6x+5-5=-5
সমীকৰণৰ দুয়োটা দিশৰ পৰা 5 বিয়োগ কৰক৷
x^{2}-6x=-5
ইয়াৰ নিজৰ পৰা 5 বিয়োগ কৰিলে 0 থাকে৷
x^{2}-6x+\left(-3\right)^{2}=-5+\left(-3\right)^{2}
-6 হৰণ কৰক, -3 লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে -3ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}-6x+9=-5+9
বৰ্গ -3৷
x^{2}-6x+9=4
9 লৈ -5 যোগ কৰক৷
\left(x-3\right)^{2}=4
উৎপাদক x^{2}-6x+9 । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x-3\right)^{2}}=\sqrt{4}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x-3=2 x-3=-2
সৰলীকৰণ৷
x=5 x=1
সমীকৰণৰ দুয়োটা দিশতে 3 যোগ কৰক৷