মুখ্য সমললৈ এৰি যাওক
x-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

a+b=-4 ab=-21
সমীকৰণ সমাধান কৰিবলৈ সূত্ৰ x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) ব্যৱহাৰ কৰি x^{2}-4x-21ৰ উৎপাদক উলিয়াওক। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
1,-21 3,-7
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে ঋণাত্মক সংখ্যাটোৰ যোগাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -21 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
1-21=-20 3-7=-4
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-7 b=3
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -4।
\left(x-7\right)\left(x+3\right)
লাভ কৰা মূল্য ব্যৱহাৰ কৰি উৎপাদক উলিওৱা ৰাশি \left(x+a\right)\left(x+b\right) পুনৰ লিখক।
x=7 x=-3
সমীকৰণ উলিয়াবলৈ, x-7=0 আৰু x+3=0 সমাধান কৰক।
a+b=-4 ab=1\left(-21\right)=-21
সমীকৰণ সমাধান কৰিবলৈ, বাওঁহাতে গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে বাওঁহাতে x^{2}+ax+bx-21 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
1,-21 3,-7
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে ঋণাত্মক সংখ্যাটোৰ যোগাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -21 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
1-21=-20 3-7=-4
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-7 b=3
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -4।
\left(x^{2}-7x\right)+\left(3x-21\right)
x^{2}-4x-21ক \left(x^{2}-7x\right)+\left(3x-21\right) হিচাপে পুনৰ লিখক।
x\left(x-7\right)+3\left(x-7\right)
প্ৰথম গোটত x আৰু দ্বিতীয় গোটত 3ৰ গুণনীয়ক উলিয়াওক।
\left(x-7\right)\left(x+3\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম x-7ৰ গুণনীয়ক উলিয়াওক।
x=7 x=-3
সমীকৰণ উলিয়াবলৈ, x-7=0 আৰু x+3=0 সমাধান কৰক।
x^{2}-4x-21=0
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-21\right)}}{2}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 1, b-ৰ বাবে -4, c-ৰ বাবে -21 চাবষ্টিটিউট৷
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-21\right)}}{2}
বৰ্গ -4৷
x=\frac{-\left(-4\right)±\sqrt{16+84}}{2}
-4 বাৰ -21 পুৰণ কৰক৷
x=\frac{-\left(-4\right)±\sqrt{100}}{2}
84 লৈ 16 যোগ কৰক৷
x=\frac{-\left(-4\right)±10}{2}
100-ৰ বৰ্গমূল লওক৷
x=\frac{4±10}{2}
-4ৰ বিপৰীত হৈছে 4৷
x=\frac{14}{2}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{4±10}{2} সমাধান কৰক৷ 10 লৈ 4 যোগ কৰক৷
x=7
2-ৰ দ্বাৰা 14 হৰণ কৰক৷
x=-\frac{6}{2}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{4±10}{2} সমাধান কৰক৷ 4-ৰ পৰা 10 বিয়োগ কৰক৷
x=-3
2-ৰ দ্বাৰা -6 হৰণ কৰক৷
x=7 x=-3
সমীকৰণটো এতিয়া সমাধান হৈছে৷
x^{2}-4x-21=0
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
x^{2}-4x-21-\left(-21\right)=-\left(-21\right)
সমীকৰণৰ দুয়োটা দিশতে 21 যোগ কৰক৷
x^{2}-4x=-\left(-21\right)
ইয়াৰ নিজৰ পৰা -21 বিয়োগ কৰিলে 0 থাকে৷
x^{2}-4x=21
0-ৰ পৰা -21 বিয়োগ কৰক৷
x^{2}-4x+\left(-2\right)^{2}=21+\left(-2\right)^{2}
-4 হৰণ কৰক, -2 লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে -2ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}-4x+4=21+4
বৰ্গ -2৷
x^{2}-4x+4=25
4 লৈ 21 যোগ কৰক৷
\left(x-2\right)^{2}=25
উৎপাদক x^{2}-4x+4 । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x-2\right)^{2}}=\sqrt{25}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x-2=5 x-2=-5
সৰলীকৰণ৷
x=7 x=-3
সমীকৰণৰ দুয়োটা দিশতে 2 যোগ কৰক৷