মুখ্য সমললৈ এৰি যাওক
x-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

a+b=-4 ab=-192
সমীকৰণ সমাধান কৰিবলৈ সূত্ৰ x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) ব্যৱহাৰ কৰি x^{2}-4x-192ৰ উৎপাদক উলিয়াওক। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
1,-192 2,-96 3,-64 4,-48 6,-32 8,-24 12,-16
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে ঋণাত্মক সংখ্যাটোৰ যোগাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -192 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
1-192=-191 2-96=-94 3-64=-61 4-48=-44 6-32=-26 8-24=-16 12-16=-4
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-16 b=12
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -4।
\left(x-16\right)\left(x+12\right)
লাভ কৰা মূল্য ব্যৱহাৰ কৰি উৎপাদক উলিওৱা ৰাশি \left(x+a\right)\left(x+b\right) পুনৰ লিখক।
x=16 x=-12
সমীকৰণ উলিয়াবলৈ, x-16=0 আৰু x+12=0 সমাধান কৰক।
a+b=-4 ab=1\left(-192\right)=-192
সমীকৰণ সমাধান কৰিবলৈ, বাওঁহাতে গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে বাওঁহাতে x^{2}+ax+bx-192 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
1,-192 2,-96 3,-64 4,-48 6,-32 8,-24 12,-16
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে ঋণাত্মক সংখ্যাটোৰ যোগাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -192 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
1-192=-191 2-96=-94 3-64=-61 4-48=-44 6-32=-26 8-24=-16 12-16=-4
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-16 b=12
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -4।
\left(x^{2}-16x\right)+\left(12x-192\right)
x^{2}-4x-192ক \left(x^{2}-16x\right)+\left(12x-192\right) হিচাপে পুনৰ লিখক।
x\left(x-16\right)+12\left(x-16\right)
প্ৰথম গোটত x আৰু দ্বিতীয় গোটত 12ৰ গুণনীয়ক উলিয়াওক।
\left(x-16\right)\left(x+12\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম x-16ৰ গুণনীয়ক উলিয়াওক।
x=16 x=-12
সমীকৰণ উলিয়াবলৈ, x-16=0 আৰু x+12=0 সমাধান কৰক।
x^{2}-4x-192=0
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-192\right)}}{2}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 1, b-ৰ বাবে -4, c-ৰ বাবে -192 চাবষ্টিটিউট৷
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-192\right)}}{2}
বৰ্গ -4৷
x=\frac{-\left(-4\right)±\sqrt{16+768}}{2}
-4 বাৰ -192 পুৰণ কৰক৷
x=\frac{-\left(-4\right)±\sqrt{784}}{2}
768 লৈ 16 যোগ কৰক৷
x=\frac{-\left(-4\right)±28}{2}
784-ৰ বৰ্গমূল লওক৷
x=\frac{4±28}{2}
-4ৰ বিপৰীত হৈছে 4৷
x=\frac{32}{2}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{4±28}{2} সমাধান কৰক৷ 28 লৈ 4 যোগ কৰক৷
x=16
2-ৰ দ্বাৰা 32 হৰণ কৰক৷
x=-\frac{24}{2}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{4±28}{2} সমাধান কৰক৷ 4-ৰ পৰা 28 বিয়োগ কৰক৷
x=-12
2-ৰ দ্বাৰা -24 হৰণ কৰক৷
x=16 x=-12
সমীকৰণটো এতিয়া সমাধান হৈছে৷
x^{2}-4x-192=0
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
x^{2}-4x-192-\left(-192\right)=-\left(-192\right)
সমীকৰণৰ দুয়োটা দিশতে 192 যোগ কৰক৷
x^{2}-4x=-\left(-192\right)
ইয়াৰ নিজৰ পৰা -192 বিয়োগ কৰিলে 0 থাকে৷
x^{2}-4x=192
0-ৰ পৰা -192 বিয়োগ কৰক৷
x^{2}-4x+\left(-2\right)^{2}=192+\left(-2\right)^{2}
-4 হৰণ কৰক, -2 লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে -2ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}-4x+4=192+4
বৰ্গ -2৷
x^{2}-4x+4=196
4 লৈ 192 যোগ কৰক৷
\left(x-2\right)^{2}=196
উৎপাদক x^{2}-4x+4 । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x-2\right)^{2}}=\sqrt{196}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x-2=14 x-2=-14
সৰলীকৰণ৷
x=16 x=-12
সমীকৰণৰ দুয়োটা দিশতে 2 যোগ কৰক৷