মুখ্য সমললৈ এৰি যাওক
কাৰক
Tick mark Image
মূল্যায়ন
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

a+b=-3 ab=1\left(-108\right)=-108
এক্সপ্ৰেছনবোৰৰ গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে ৰাশিটো x^{2}+ax+bx-108 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
1,-108 2,-54 3,-36 4,-27 6,-18 9,-12
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে ঋণাত্মক সংখ্যাটোৰ যোগাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -108 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
1-108=-107 2-54=-52 3-36=-33 4-27=-23 6-18=-12 9-12=-3
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-12 b=9
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -3।
\left(x^{2}-12x\right)+\left(9x-108\right)
x^{2}-3x-108ক \left(x^{2}-12x\right)+\left(9x-108\right) হিচাপে পুনৰ লিখক।
x\left(x-12\right)+9\left(x-12\right)
প্ৰথম গোটত x আৰু দ্বিতীয় গোটত 9ৰ গুণনীয়ক উলিয়াওক।
\left(x-12\right)\left(x+9\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম x-12ৰ গুণনীয়ক উলিয়াওক।
x^{2}-3x-108=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ৰূপান্তৰ ব্যৱহাৰ কৰিলে দ্বিঘাত ত্ৰিপদৰাশি উৎপাদক হ'ব পাৰে, য'ত x_{1} আৰু x_{2} দ্বিঘাত সমীকৰণ ax^{2}+bx+c=0ৰ সমাধান হয়৷
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-108\right)}}{2}
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-108\right)}}{2}
বৰ্গ -3৷
x=\frac{-\left(-3\right)±\sqrt{9+432}}{2}
-4 বাৰ -108 পুৰণ কৰক৷
x=\frac{-\left(-3\right)±\sqrt{441}}{2}
432 লৈ 9 যোগ কৰক৷
x=\frac{-\left(-3\right)±21}{2}
441-ৰ বৰ্গমূল লওক৷
x=\frac{3±21}{2}
-3ৰ বিপৰীত হৈছে 3৷
x=\frac{24}{2}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{3±21}{2} সমাধান কৰক৷ 21 লৈ 3 যোগ কৰক৷
x=12
2-ৰ দ্বাৰা 24 হৰণ কৰক৷
x=-\frac{18}{2}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{3±21}{2} সমাধান কৰক৷ 3-ৰ পৰা 21 বিয়োগ কৰক৷
x=-9
2-ৰ দ্বাৰা -18 হৰণ কৰক৷
x^{2}-3x-108=\left(x-12\right)\left(x-\left(-9\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যৱহাৰ কৰিলে মূল উপাদান হয়৷ x_{1}ৰ বাবে 12 আৰু x_{2}ৰ বাবে -9 বিকল্প৷
x^{2}-3x-108=\left(x-12\right)\left(x+9\right)
প্ৰপত্ৰ p-\left(-q\right) ৰ পৰা p+q লৈ সকলো এক্সপ্ৰেশ্বন সৰলীকৃত কৰক৷