মুখ্য সমললৈ এৰি যাওক
x-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

a+b=-15 ab=44
সমীকৰণ সমাধান কৰিবলৈ সূত্ৰ x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) ব্যৱহাৰ কৰি x^{2}-15x+44ৰ উৎপাদক উলিয়াওক। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
-1,-44 -2,-22 -4,-11
যিহেতু ab যোগাত্মক, সেয়েহে a আৰু bৰ অনুৰূপ সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে a আৰু b দুয়োটাই ঋণাত্মক। যিবোৰ যোৰাই গুণফল 44 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
-1-44=-45 -2-22=-24 -4-11=-15
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-11 b=-4
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -15।
\left(x-11\right)\left(x-4\right)
লাভ কৰা মূল্য ব্যৱহাৰ কৰি উৎপাদক উলিওৱা ৰাশি \left(x+a\right)\left(x+b\right) পুনৰ লিখক।
x=11 x=4
সমীকৰণ উলিয়াবলৈ, x-11=0 আৰু x-4=0 সমাধান কৰক।
a+b=-15 ab=1\times 44=44
সমীকৰণ সমাধান কৰিবলৈ, বাওঁহাতে গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে বাওঁহাতে x^{2}+ax+bx+44 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
-1,-44 -2,-22 -4,-11
যিহেতু ab যোগাত্মক, সেয়েহে a আৰু bৰ অনুৰূপ সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে a আৰু b দুয়োটাই ঋণাত্মক। যিবোৰ যোৰাই গুণফল 44 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
-1-44=-45 -2-22=-24 -4-11=-15
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-11 b=-4
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -15।
\left(x^{2}-11x\right)+\left(-4x+44\right)
x^{2}-15x+44ক \left(x^{2}-11x\right)+\left(-4x+44\right) হিচাপে পুনৰ লিখক।
x\left(x-11\right)-4\left(x-11\right)
প্ৰথম গোটত x আৰু দ্বিতীয় গোটত -4ৰ গুণনীয়ক উলিয়াওক।
\left(x-11\right)\left(x-4\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম x-11ৰ গুণনীয়ক উলিয়াওক।
x=11 x=4
সমীকৰণ উলিয়াবলৈ, x-11=0 আৰু x-4=0 সমাধান কৰক।
x^{2}-15x+44=0
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 44}}{2}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 1, b-ৰ বাবে -15, c-ৰ বাবে 44 চাবষ্টিটিউট৷
x=\frac{-\left(-15\right)±\sqrt{225-4\times 44}}{2}
বৰ্গ -15৷
x=\frac{-\left(-15\right)±\sqrt{225-176}}{2}
-4 বাৰ 44 পুৰণ কৰক৷
x=\frac{-\left(-15\right)±\sqrt{49}}{2}
-176 লৈ 225 যোগ কৰক৷
x=\frac{-\left(-15\right)±7}{2}
49-ৰ বৰ্গমূল লওক৷
x=\frac{15±7}{2}
-15ৰ বিপৰীত হৈছে 15৷
x=\frac{22}{2}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{15±7}{2} সমাধান কৰক৷ 7 লৈ 15 যোগ কৰক৷
x=11
2-ৰ দ্বাৰা 22 হৰণ কৰক৷
x=\frac{8}{2}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{15±7}{2} সমাধান কৰক৷ 15-ৰ পৰা 7 বিয়োগ কৰক৷
x=4
2-ৰ দ্বাৰা 8 হৰণ কৰক৷
x=11 x=4
সমীকৰণটো এতিয়া সমাধান হৈছে৷
x^{2}-15x+44=0
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
x^{2}-15x+44-44=-44
সমীকৰণৰ দুয়োটা দিশৰ পৰা 44 বিয়োগ কৰক৷
x^{2}-15x=-44
ইয়াৰ নিজৰ পৰা 44 বিয়োগ কৰিলে 0 থাকে৷
x^{2}-15x+\left(-\frac{15}{2}\right)^{2}=-44+\left(-\frac{15}{2}\right)^{2}
-15 হৰণ কৰক, -\frac{15}{2} লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে -\frac{15}{2}ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}-15x+\frac{225}{4}=-44+\frac{225}{4}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি -\frac{15}{2} বৰ্গ কৰক৷
x^{2}-15x+\frac{225}{4}=\frac{49}{4}
\frac{225}{4} লৈ -44 যোগ কৰক৷
\left(x-\frac{15}{2}\right)^{2}=\frac{49}{4}
উৎপাদক x^{2}-15x+\frac{225}{4} । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x-\frac{15}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x-\frac{15}{2}=\frac{7}{2} x-\frac{15}{2}=-\frac{7}{2}
সৰলীকৰণ৷
x=11 x=4
সমীকৰণৰ দুয়োটা দিশতে \frac{15}{2} যোগ কৰক৷