মুখ্য সমললৈ এৰি যাওক
x-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

a+b=-14 ab=40
সমীকৰণ সমাধান কৰিবলৈ সূত্ৰ x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) ব্যৱহাৰ কৰি x^{2}-14x+40ৰ উৎপাদক উলিয়াওক। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
-1,-40 -2,-20 -4,-10 -5,-8
যিহেতু ab যোগাত্মক, সেয়েহে a আৰু bৰ অনুৰূপ সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে a আৰু b দুয়োটাই ঋণাত্মক। যিবোৰ যোৰাই গুণফল 40 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
-1-40=-41 -2-20=-22 -4-10=-14 -5-8=-13
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-10 b=-4
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -14।
\left(x-10\right)\left(x-4\right)
লাভ কৰা মূল্য ব্যৱহাৰ কৰি উৎপাদক উলিওৱা ৰাশি \left(x+a\right)\left(x+b\right) পুনৰ লিখক।
x=10 x=4
সমীকৰণ উলিয়াবলৈ, x-10=0 আৰু x-4=0 সমাধান কৰক।
a+b=-14 ab=1\times 40=40
সমীকৰণ সমাধান কৰিবলৈ, বাওঁহাতে গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে বাওঁহাতে x^{2}+ax+bx+40 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
-1,-40 -2,-20 -4,-10 -5,-8
যিহেতু ab যোগাত্মক, সেয়েহে a আৰু bৰ অনুৰূপ সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে a আৰু b দুয়োটাই ঋণাত্মক। যিবোৰ যোৰাই গুণফল 40 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
-1-40=-41 -2-20=-22 -4-10=-14 -5-8=-13
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-10 b=-4
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -14।
\left(x^{2}-10x\right)+\left(-4x+40\right)
x^{2}-14x+40ক \left(x^{2}-10x\right)+\left(-4x+40\right) হিচাপে পুনৰ লিখক।
x\left(x-10\right)-4\left(x-10\right)
প্ৰথম গোটত x আৰু দ্বিতীয় গোটত -4ৰ গুণনীয়ক উলিয়াওক।
\left(x-10\right)\left(x-4\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম x-10ৰ গুণনীয়ক উলিয়াওক।
x=10 x=4
সমীকৰণ উলিয়াবলৈ, x-10=0 আৰু x-4=0 সমাধান কৰক।
x^{2}-14x+40=0
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 40}}{2}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 1, b-ৰ বাবে -14, c-ৰ বাবে 40 চাবষ্টিটিউট৷
x=\frac{-\left(-14\right)±\sqrt{196-4\times 40}}{2}
বৰ্গ -14৷
x=\frac{-\left(-14\right)±\sqrt{196-160}}{2}
-4 বাৰ 40 পুৰণ কৰক৷
x=\frac{-\left(-14\right)±\sqrt{36}}{2}
-160 লৈ 196 যোগ কৰক৷
x=\frac{-\left(-14\right)±6}{2}
36-ৰ বৰ্গমূল লওক৷
x=\frac{14±6}{2}
-14ৰ বিপৰীত হৈছে 14৷
x=\frac{20}{2}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{14±6}{2} সমাধান কৰক৷ 6 লৈ 14 যোগ কৰক৷
x=10
2-ৰ দ্বাৰা 20 হৰণ কৰক৷
x=\frac{8}{2}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{14±6}{2} সমাধান কৰক৷ 14-ৰ পৰা 6 বিয়োগ কৰক৷
x=4
2-ৰ দ্বাৰা 8 হৰণ কৰক৷
x=10 x=4
সমীকৰণটো এতিয়া সমাধান হৈছে৷
x^{2}-14x+40=0
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
x^{2}-14x+40-40=-40
সমীকৰণৰ দুয়োটা দিশৰ পৰা 40 বিয়োগ কৰক৷
x^{2}-14x=-40
ইয়াৰ নিজৰ পৰা 40 বিয়োগ কৰিলে 0 থাকে৷
x^{2}-14x+\left(-7\right)^{2}=-40+\left(-7\right)^{2}
-14 হৰণ কৰক, -7 লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে -7ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}-14x+49=-40+49
বৰ্গ -7৷
x^{2}-14x+49=9
49 লৈ -40 যোগ কৰক৷
\left(x-7\right)^{2}=9
উৎপাদক x^{2}-14x+49 । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x-7\right)^{2}}=\sqrt{9}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x-7=3 x-7=-3
সৰলীকৰণ৷
x=10 x=4
সমীকৰণৰ দুয়োটা দিশতে 7 যোগ কৰক৷