মুখ্য সমললৈ এৰি যাওক
x-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

x^{2}+8x-48=0
দুয়োটা দিশৰ পৰা 48 বিয়োগ কৰক৷
a+b=8 ab=-48
সমীকৰণ সমাধান কৰিবলৈ সূত্ৰ x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) ব্যৱহাৰ কৰি x^{2}+8x-48ৰ উৎপাদক উলিয়াওক। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
-1,48 -2,24 -3,16 -4,12 -6,8
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b যোগাত্মক, সেয়েহে যোগাত্মক সংখ্যাটোৰ ঋণাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -48 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
-1+48=47 -2+24=22 -3+16=13 -4+12=8 -6+8=2
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-4 b=12
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল 8।
\left(x-4\right)\left(x+12\right)
লাভ কৰা মূল্য ব্যৱহাৰ কৰি উৎপাদক উলিওৱা ৰাশি \left(x+a\right)\left(x+b\right) পুনৰ লিখক।
x=4 x=-12
সমীকৰণ উলিয়াবলৈ, x-4=0 আৰু x+12=0 সমাধান কৰক।
x^{2}+8x-48=0
দুয়োটা দিশৰ পৰা 48 বিয়োগ কৰক৷
a+b=8 ab=1\left(-48\right)=-48
সমীকৰণ সমাধান কৰিবলৈ, বাওঁহাতে গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে বাওঁহাতে x^{2}+ax+bx-48 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
-1,48 -2,24 -3,16 -4,12 -6,8
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b যোগাত্মক, সেয়েহে যোগাত্মক সংখ্যাটোৰ ঋণাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -48 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
-1+48=47 -2+24=22 -3+16=13 -4+12=8 -6+8=2
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-4 b=12
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল 8।
\left(x^{2}-4x\right)+\left(12x-48\right)
x^{2}+8x-48ক \left(x^{2}-4x\right)+\left(12x-48\right) হিচাপে পুনৰ লিখক।
x\left(x-4\right)+12\left(x-4\right)
প্ৰথম গোটত x আৰু দ্বিতীয় গোটত 12ৰ গুণনীয়ক উলিয়াওক।
\left(x-4\right)\left(x+12\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম x-4ৰ গুণনীয়ক উলিয়াওক।
x=4 x=-12
সমীকৰণ উলিয়াবলৈ, x-4=0 আৰু x+12=0 সমাধান কৰক।
x^{2}+8x=48
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x^{2}+8x-48=48-48
সমীকৰণৰ দুয়োটা দিশৰ পৰা 48 বিয়োগ কৰক৷
x^{2}+8x-48=0
ইয়াৰ নিজৰ পৰা 48 বিয়োগ কৰিলে 0 থাকে৷
x=\frac{-8±\sqrt{8^{2}-4\left(-48\right)}}{2}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 1, b-ৰ বাবে 8, c-ৰ বাবে -48 চাবষ্টিটিউট৷
x=\frac{-8±\sqrt{64-4\left(-48\right)}}{2}
বৰ্গ 8৷
x=\frac{-8±\sqrt{64+192}}{2}
-4 বাৰ -48 পুৰণ কৰক৷
x=\frac{-8±\sqrt{256}}{2}
192 লৈ 64 যোগ কৰক৷
x=\frac{-8±16}{2}
256-ৰ বৰ্গমূল লওক৷
x=\frac{8}{2}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{-8±16}{2} সমাধান কৰক৷ 16 লৈ -8 যোগ কৰক৷
x=4
2-ৰ দ্বাৰা 8 হৰণ কৰক৷
x=-\frac{24}{2}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{-8±16}{2} সমাধান কৰক৷ -8-ৰ পৰা 16 বিয়োগ কৰক৷
x=-12
2-ৰ দ্বাৰা -24 হৰণ কৰক৷
x=4 x=-12
সমীকৰণটো এতিয়া সমাধান হৈছে৷
x^{2}+8x=48
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
x^{2}+8x+4^{2}=48+4^{2}
8 হৰণ কৰক, 4 লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে 4ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}+8x+16=48+16
বৰ্গ 4৷
x^{2}+8x+16=64
16 লৈ 48 যোগ কৰক৷
\left(x+4\right)^{2}=64
উৎপাদক x^{2}+8x+16 । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x+4\right)^{2}}=\sqrt{64}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x+4=8 x+4=-8
সৰলীকৰণ৷
x=4 x=-12
সমীকৰণৰ দুয়োটা দিশৰ পৰা 4 বিয়োগ কৰক৷