মুখ্য সমললৈ এৰি যাওক
কাৰক
Tick mark Image
মূল্যায়ন
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

a+b=34 ab=1\times 33=33
এক্সপ্ৰেছনবোৰৰ গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে ৰাশিটো x^{2}+ax+bx+33 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
1,33 3,11
যিহেতু ab যোগাত্মক, সেয়েহে a আৰু bৰ অনুৰূপ সংকেত আছে। যিহেতু a+b যোগাত্মক, সেয়েহে a আৰু b দুয়োটাই যোগাত্মক। যিবোৰ যোৰাই গুণফল 33 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
1+33=34 3+11=14
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=1 b=33
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল 34।
\left(x^{2}+x\right)+\left(33x+33\right)
x^{2}+34x+33ক \left(x^{2}+x\right)+\left(33x+33\right) হিচাপে পুনৰ লিখক।
x\left(x+1\right)+33\left(x+1\right)
প্ৰথম গোটত x আৰু দ্বিতীয় গোটত 33ৰ গুণনীয়ক উলিয়াওক।
\left(x+1\right)\left(x+33\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম x+1ৰ গুণনীয়ক উলিয়াওক।
x^{2}+34x+33=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ৰূপান্তৰ ব্যৱহাৰ কৰিলে দ্বিঘাত ত্ৰিপদৰাশি উৎপাদক হ'ব পাৰে, য'ত x_{1} আৰু x_{2} দ্বিঘাত সমীকৰণ ax^{2}+bx+c=0ৰ সমাধান হয়৷
x=\frac{-34±\sqrt{34^{2}-4\times 33}}{2}
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-34±\sqrt{1156-4\times 33}}{2}
বৰ্গ 34৷
x=\frac{-34±\sqrt{1156-132}}{2}
-4 বাৰ 33 পুৰণ কৰক৷
x=\frac{-34±\sqrt{1024}}{2}
-132 লৈ 1156 যোগ কৰক৷
x=\frac{-34±32}{2}
1024-ৰ বৰ্গমূল লওক৷
x=-\frac{2}{2}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{-34±32}{2} সমাধান কৰক৷ 32 লৈ -34 যোগ কৰক৷
x=-1
2-ৰ দ্বাৰা -2 হৰণ কৰক৷
x=-\frac{66}{2}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{-34±32}{2} সমাধান কৰক৷ -34-ৰ পৰা 32 বিয়োগ কৰক৷
x=-33
2-ৰ দ্বাৰা -66 হৰণ কৰক৷
x^{2}+34x+33=\left(x-\left(-1\right)\right)\left(x-\left(-33\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যৱহাৰ কৰিলে মূল উপাদান হয়৷ x_{1}ৰ বাবে -1 আৰু x_{2}ৰ বাবে -33 বিকল্প৷
x^{2}+34x+33=\left(x+1\right)\left(x+33\right)
প্ৰপত্ৰ p-\left(-q\right) ৰ পৰা p+q লৈ সকলো এক্সপ্ৰেশ্বন সৰলীকৃত কৰক৷