মুখ্য সমললৈ এৰি যাওক
x-ৰ বাবে সমাধান কৰক (জটিল সমাধান)
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

3x^{2}+5x+6=0
3x^{2} লাভ কৰিবলৈ x^{2} আৰু 2x^{2} একত্ৰ কৰক৷
x=\frac{-5±\sqrt{5^{2}-4\times 3\times 6}}{2\times 3}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 3, b-ৰ বাবে 5, c-ৰ বাবে 6 চাবষ্টিটিউট৷
x=\frac{-5±\sqrt{25-4\times 3\times 6}}{2\times 3}
বৰ্গ 5৷
x=\frac{-5±\sqrt{25-12\times 6}}{2\times 3}
-4 বাৰ 3 পুৰণ কৰক৷
x=\frac{-5±\sqrt{25-72}}{2\times 3}
-12 বাৰ 6 পুৰণ কৰক৷
x=\frac{-5±\sqrt{-47}}{2\times 3}
-72 লৈ 25 যোগ কৰক৷
x=\frac{-5±\sqrt{47}i}{2\times 3}
-47-ৰ বৰ্গমূল লওক৷
x=\frac{-5±\sqrt{47}i}{6}
2 বাৰ 3 পুৰণ কৰক৷
x=\frac{-5+\sqrt{47}i}{6}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{-5±\sqrt{47}i}{6} সমাধান কৰক৷ i\sqrt{47} লৈ -5 যোগ কৰক৷
x=\frac{-\sqrt{47}i-5}{6}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{-5±\sqrt{47}i}{6} সমাধান কৰক৷ -5-ৰ পৰা i\sqrt{47} বিয়োগ কৰক৷
x=\frac{-5+\sqrt{47}i}{6} x=\frac{-\sqrt{47}i-5}{6}
সমীকৰণটো এতিয়া সমাধান হৈছে৷
3x^{2}+5x+6=0
3x^{2} লাভ কৰিবলৈ x^{2} আৰু 2x^{2} একত্ৰ কৰক৷
3x^{2}+5x=-6
দুয়োটা দিশৰ পৰা 6 বিয়োগ কৰক৷ শূণ্যৰ পৰা যিকোনো বিয়োগ কৰিলে ঋণাত্মকেই দিয়ে৷
\frac{3x^{2}+5x}{3}=-\frac{6}{3}
3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x^{2}+\frac{5}{3}x=-\frac{6}{3}
3-ৰ দ্বাৰা হৰণ কৰিলে 3-ৰ দ্বাৰা কৰা পুৰণক পূৰ্বৰ দৰে কৰি দিয়ে৷
x^{2}+\frac{5}{3}x=-2
3-ৰ দ্বাৰা -6 হৰণ কৰক৷
x^{2}+\frac{5}{3}x+\left(\frac{5}{6}\right)^{2}=-2+\left(\frac{5}{6}\right)^{2}
\frac{5}{3} হৰণ কৰক, \frac{5}{6} লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে \frac{5}{6}ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}+\frac{5}{3}x+\frac{25}{36}=-2+\frac{25}{36}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি \frac{5}{6} বৰ্গ কৰক৷
x^{2}+\frac{5}{3}x+\frac{25}{36}=-\frac{47}{36}
\frac{25}{36} লৈ -2 যোগ কৰক৷
\left(x+\frac{5}{6}\right)^{2}=-\frac{47}{36}
উৎপাদক x^{2}+\frac{5}{3}x+\frac{25}{36} । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x+\frac{5}{6}\right)^{2}}=\sqrt{-\frac{47}{36}}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x+\frac{5}{6}=\frac{\sqrt{47}i}{6} x+\frac{5}{6}=-\frac{\sqrt{47}i}{6}
সৰলীকৰণ৷
x=\frac{-5+\sqrt{47}i}{6} x=\frac{-\sqrt{47}i-5}{6}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{5}{6} বিয়োগ কৰক৷