কাৰক
\left(x+1\right)\left(x+120\right)
মূল্যায়ন
\left(x+1\right)\left(x+120\right)
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
a+b=121 ab=1\times 120=120
এক্সপ্ৰেছনবোৰৰ গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে ৰাশিটো x^{2}+ax+bx+120 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
1,120 2,60 3,40 4,30 5,24 6,20 8,15 10,12
যিহেতু ab যোগাত্মক, সেয়েহে a আৰু bৰ অনুৰূপ সংকেত আছে। যিহেতু a+b যোগাত্মক, সেয়েহে a আৰু b দুয়োটাই যোগাত্মক। যিবোৰ যোৰাই গুণফল 120 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
1+120=121 2+60=62 3+40=43 4+30=34 5+24=29 6+20=26 8+15=23 10+12=22
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=1 b=120
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল 121।
\left(x^{2}+x\right)+\left(120x+120\right)
x^{2}+121x+120ক \left(x^{2}+x\right)+\left(120x+120\right) হিচাপে পুনৰ লিখক।
x\left(x+1\right)+120\left(x+1\right)
প্ৰথম গোটত x আৰু দ্বিতীয় গোটত 120ৰ গুণনীয়ক উলিয়াওক।
\left(x+1\right)\left(x+120\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম x+1ৰ গুণনীয়ক উলিয়াওক।
x^{2}+121x+120=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ৰূপান্তৰ ব্যৱহাৰ কৰিলে দ্বিঘাত ত্ৰিপদৰাশি উৎপাদক হ'ব পাৰে, য'ত x_{1} আৰু x_{2} দ্বিঘাত সমীকৰণ ax^{2}+bx+c=0ৰ সমাধান হয়৷
x=\frac{-121±\sqrt{121^{2}-4\times 120}}{2}
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-121±\sqrt{14641-4\times 120}}{2}
বৰ্গ 121৷
x=\frac{-121±\sqrt{14641-480}}{2}
-4 বাৰ 120 পুৰণ কৰক৷
x=\frac{-121±\sqrt{14161}}{2}
-480 লৈ 14641 যোগ কৰক৷
x=\frac{-121±119}{2}
14161-ৰ বৰ্গমূল লওক৷
x=-\frac{2}{2}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{-121±119}{2} সমাধান কৰক৷ 119 লৈ -121 যোগ কৰক৷
x=-1
2-ৰ দ্বাৰা -2 হৰণ কৰক৷
x=-\frac{240}{2}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{-121±119}{2} সমাধান কৰক৷ -121-ৰ পৰা 119 বিয়োগ কৰক৷
x=-120
2-ৰ দ্বাৰা -240 হৰণ কৰক৷
x^{2}+121x+120=\left(x-\left(-1\right)\right)\left(x-\left(-120\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যৱহাৰ কৰিলে মূল উপাদান হয়৷ x_{1}ৰ বাবে -1 আৰু x_{2}ৰ বাবে -120 বিকল্প৷
x^{2}+121x+120=\left(x+1\right)\left(x+120\right)
প্ৰপত্ৰ p-\left(-q\right) ৰ পৰা p+q লৈ সকলো এক্সপ্ৰেশ্বন সৰলীকৃত কৰক৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}