ডিফাৰেনচিয়েট w.r.t. x
2x
মূল্যায়ন
x^{2}
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
x^{-6}\frac{\mathrm{d}}{\mathrm{d}x}(x^{8})+x^{8}\frac{\mathrm{d}}{\mathrm{d}x}(x^{-6})
যিকোনো দুটা ডিফাৰেনচিয়েবল ফাংচনৰ বাবে, দুটা ফাংচনৰ গুণফলৰ ডিৰাইভেটিভ হৈছে প্ৰথম ফাংচনে দ্বিতীয়টোৰ ডিৰাইভেটিভক বৃদ্ধি কৰে লগতে দ্বিতীয় ফাংচনে প্ৰথমটোৰ ডিৰাইউভেটিভক বৃদ্ধি কৰে৷
x^{-6}\times 8x^{8-1}+x^{8}\left(-6\right)x^{-6-1}
এটা বহুপদ ৰাশিৰ যৌগিক ৰাশিটো হৈছে ইয়াৰ ৰাশিসমূহৰ যৌগিক ৰাশিৰ যোগফল৷ কোনো ধ্ৰুৱক ৰাশিৰ যৌগিক ৰাশি হৈছে 0। ax^{n}-ৰ যৌগিক ৰাশি হৈছে nax^{n-1}।
x^{-6}\times 8x^{7}+x^{8}\left(-6\right)x^{-7}
সৰলীকৰণ৷
8x^{-6+7}-6x^{8-7}
একেটা বেচৰ পাৱাৰ মাল্টিপ্লাই কৰিবৰ বাবে সেইবিলাকৰ প্ৰতিপাদক যোগ কৰক৷
8x^{1}-6x^{1}
সৰলীকৰণ৷
8x-6x
যিকোনো পদৰ বাবে t, t^{1}=t।
x^{2}
একে আধাৰৰ পাৱাৰ পূৰণ কৰিবলৈ, সেইবোৰৰ ঘাতসমূহ যোগ কৰক। 2 পাবলৈ -6 আৰু 8 যোগ কৰক।
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}