মুখ্য সমললৈ এৰি যাওক
x-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

x-4x^{2}=-x
দুয়োটা দিশৰ পৰা 4x^{2} বিয়োগ কৰক৷
x-4x^{2}+x=0
উভয় কাষে x যোগ কৰক।
2x-4x^{2}=0
2x লাভ কৰিবলৈ x আৰু x একত্ৰ কৰক৷
x\left(2-4x\right)=0
xৰ গুণনীয়ক উলিয়াওক।
x=0 x=\frac{1}{2}
সমীকৰণ উলিয়াবলৈ, x=0 আৰু 2-4x=0 সমাধান কৰক।
x-4x^{2}=-x
দুয়োটা দিশৰ পৰা 4x^{2} বিয়োগ কৰক৷
x-4x^{2}+x=0
উভয় কাষে x যোগ কৰক।
2x-4x^{2}=0
2x লাভ কৰিবলৈ x আৰু x একত্ৰ কৰক৷
-4x^{2}+2x=0
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-2±\sqrt{2^{2}}}{2\left(-4\right)}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে -4, b-ৰ বাবে 2, c-ৰ বাবে 0 চাবষ্টিটিউট৷
x=\frac{-2±2}{2\left(-4\right)}
2^{2}-ৰ বৰ্গমূল লওক৷
x=\frac{-2±2}{-8}
2 বাৰ -4 পুৰণ কৰক৷
x=\frac{0}{-8}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{-2±2}{-8} সমাধান কৰক৷ 2 লৈ -2 যোগ কৰক৷
x=0
-8-ৰ দ্বাৰা 0 হৰণ কৰক৷
x=-\frac{4}{-8}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{-2±2}{-8} সমাধান কৰক৷ -2-ৰ পৰা 2 বিয়োগ কৰক৷
x=\frac{1}{2}
4 এক্সট্ৰেক্ট আৰু বাতিল কৰি \frac{-4}{-8} ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x=0 x=\frac{1}{2}
সমীকৰণটো এতিয়া সমাধান হৈছে৷
x-4x^{2}=-x
দুয়োটা দিশৰ পৰা 4x^{2} বিয়োগ কৰক৷
x-4x^{2}+x=0
উভয় কাষে x যোগ কৰক।
2x-4x^{2}=0
2x লাভ কৰিবলৈ x আৰু x একত্ৰ কৰক৷
-4x^{2}+2x=0
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
\frac{-4x^{2}+2x}{-4}=\frac{0}{-4}
-4-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x^{2}+\frac{2}{-4}x=\frac{0}{-4}
-4-ৰ দ্বাৰা হৰণ কৰিলে -4-ৰ দ্বাৰা কৰা পুৰণক পূৰ্বৰ দৰে কৰি দিয়ে৷
x^{2}-\frac{1}{2}x=\frac{0}{-4}
2 এক্সট্ৰেক্ট আৰু বাতিল কৰি \frac{2}{-4} ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x^{2}-\frac{1}{2}x=0
-4-ৰ দ্বাৰা 0 হৰণ কৰক৷
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\left(-\frac{1}{4}\right)^{2}
-\frac{1}{2} হৰণ কৰক, -\frac{1}{4} লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে -\frac{1}{4}ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{1}{16}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি -\frac{1}{4} বৰ্গ কৰক৷
\left(x-\frac{1}{4}\right)^{2}=\frac{1}{16}
উৎপাদক x^{2}-\frac{1}{2}x+\frac{1}{16} । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x-\frac{1}{4}=\frac{1}{4} x-\frac{1}{4}=-\frac{1}{4}
সৰলীকৰণ৷
x=\frac{1}{2} x=0
সমীকৰণৰ দুয়োটা দিশতে \frac{1}{4} যোগ কৰক৷