t-ৰ বাবে সমাধান কৰক
t=5
t=-5
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
\left(t-5\right)\left(t+5\right)=0
t^{2}-25 বিবেচনা কৰক। t^{2}-25ক t^{2}-5^{2} হিচাপে পুনৰ লিখক। ৰুল ব্যৱহাৰ কৰি বৰ্গৰ ভিন্নতাক উৎপাদক বনাব পাৰি: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right)৷
t=5 t=-5
সমীকৰণ উলিয়াবলৈ, t-5=0 আৰু t+5=0 সমাধান কৰক।
t^{2}=25
উভয় কাষে 25 যোগ কৰক। শূণ্যৰ লগত যিকোনো যোগ কৰিলে একেটাই দিয়ে৷
t=5 t=-5
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
t^{2}-25=0
কুৱাড্ৰেটিক সমীকৰণ হৈছে ইয়াৰ দৰে, এটা x^{2} পদৰ সৈতে, কিন্তু কোনো x নাই, ইয়াক কুৱাড্ৰেয়িক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, এবাৰ সেইবিলাকক মান্য ৰূপ : ax^{2}+bx+c=0-ত প্ৰদান কৰি৷
t=\frac{0±\sqrt{0^{2}-4\left(-25\right)}}{2}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 1, b-ৰ বাবে 0, c-ৰ বাবে -25 চাবষ্টিটিউট৷
t=\frac{0±\sqrt{-4\left(-25\right)}}{2}
বৰ্গ 0৷
t=\frac{0±\sqrt{100}}{2}
-4 বাৰ -25 পুৰণ কৰক৷
t=\frac{0±10}{2}
100-ৰ বৰ্গমূল লওক৷
t=5
এতিয়া ± যোগ হ’লে সমীকৰণ t=\frac{0±10}{2} সমাধান কৰক৷ 2-ৰ দ্বাৰা 10 হৰণ কৰক৷
t=-5
এতিয়া ± বিয়োগ হ’লে সমীকৰণ t=\frac{0±10}{2} সমাধান কৰক৷ 2-ৰ দ্বাৰা -10 হৰণ কৰক৷
t=5 t=-5
সমীকৰণটো এতিয়া সমাধান হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}