মুখ্য সমললৈ এৰি যাওক
r-ৰ বাবে সমাধান কৰক
Tick mark Image

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

±6,±3,±2,±1
ৰেশ্যনেল বৰ্গমূল সূত্ৰৰ দ্বাৰা, এটা বহুপদৰ সকলো ৰেশ্যনেল ৰুট \frac{p}{q}ৰ ৰূপত থাকে, য'ত pএ ধ্ৰুৱক ৰাশি 6ক হৰণ কৰে আৰু qএ প্ৰমুখ গুণাংক 1ক হৰণ কৰে। সকলো প্ৰাৰ্থীৰ সূচী \frac{p}{q}।
r=-1
পূৰ্ণ মান অনুসৰি আটাইতকৈ সৰু মানটোৰ পৰা আৰম্ভ কৰি সকলো পূৰ্ণ সংখ্যাৰ এনে এটা বৰ্গমূল বিচাৰি উলিয়াওক। যদি পূৰ্ণ সংখ্যাৰ বৰ্গমূল পোৱা নাযায়, তেন্তে ভগ্নাংশ ব্যৱহাৰ কৰি চাওক।
r^{2}-5r+6=0
গুণনীয়কৰ সূত্ৰ অনুসৰি, r-k হৈছে প্ৰত্যেক বৰ্গমূল kৰ বাবে বহুপদৰ এটা গুণনীয়ক। r^{2}-5r+6 লাভ কৰিবলৈ r+1ৰ দ্বাৰা r^{3}-4r^{2}+r+6 হৰণ কৰক৷ সমীকৰণটো সমাধান কৰক য'ত ফলাফল 0ৰ সমান হয়।
r=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 1\times 6}}{2}
ax^{2}+bx+c=0 প্ৰপত্ৰৰ সকলো সমীকৰণ দ্বিঘাত সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। aৰ বাবে 1ৰ বিকল্প দিয়ক, bৰ বাবে -5, আৰু দ্বিঘাত সূত্ৰত cৰ বাবে 6।
r=\frac{5±1}{2}
গণনা কৰক৷
r=2 r=3
যেতিয়া ± যোগ হয় আৰু যেতিয়া ± বিয়োগ হয় তেতিয়া r^{2}-5r+6=0 সমীকৰণটো সমাধান কৰক।
r=-1 r=2 r=3
বিচাৰি পোৱা সকলো ফলাফলৰ তালিকা সৃষ্টি কৰক।