মুখ্য সমললৈ এৰি যাওক
কাৰক
Tick mark Image
মূল্যায়ন
Tick mark Image

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

a+b=-10 ab=1\times 25=25
এক্সপ্ৰেছনবোৰৰ গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে ৰাশিটো r^{2}+ar+br+25 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
-1,-25 -5,-5
যিহেতু ab যোগাত্মক, সেয়েহে a আৰু bৰ অনুৰূপ সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে a আৰু b দুয়োটাই ঋণাত্মক। যিবোৰ যোৰাই গুণফল 25 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
-1-25=-26 -5-5=-10
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-5 b=-5
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -10।
\left(r^{2}-5r\right)+\left(-5r+25\right)
r^{2}-10r+25ক \left(r^{2}-5r\right)+\left(-5r+25\right) হিচাপে পুনৰ লিখক।
r\left(r-5\right)-5\left(r-5\right)
প্ৰথম গোটত r আৰু দ্বিতীয় গোটত -5ৰ গুণনীয়ক উলিয়াওক।
\left(r-5\right)\left(r-5\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম r-5ৰ গুণনীয়ক উলিয়াওক।
\left(r-5\right)^{2}
এটা বান'মিয়েল স্কুৱেৰ পুনঃলিখক৷
factor(r^{2}-10r+25)
এই ট্ৰিন'মিয়েল হৈছে এটা ট্ৰিন'মিয়েল বৰ্গৰ ৰূপ, সম্ভৱত এটা উমৈহতীয়া গুণনীয়ক দ্বাৰা পুৰণ কৰা হৈছিল৷ ট্ৰিন'মিয়েল বৰ্গক অগ্ৰণী আৰু অনুগামী টাৰ্মসমূহৰ বৰ্গমূল বিচাৰি ফেক্টৰেজ কৰিব পাৰি৷
\sqrt{25}=5
অনুগামী পদ 25ৰ বৰ্গমূল বিচাৰক৷
\left(r-5\right)^{2}
ট্ৰিন'মিয়েল বৰ্গ হৈছে বিনোমিয়েলৰ বৰ্গ, যি অগ্ৰণী আৰু অনুগামী পদসমূহৰ বৰ্গমূলৰ পাৰ্থক্য বা যোগফল, ট্ৰিন'মিয়েল বৰ্গৰ মধ্যম পদটোৰ চিনৰ দ্বাৰা নিৰ্ধাৰণ কৰা চিহ্নৰ সৈতে৷
r^{2}-10r+25=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ৰূপান্তৰ ব্যৱহাৰ কৰিলে দ্বিঘাত ত্ৰিপদৰাশি উৎপাদক হ'ব পাৰে, য'ত x_{1} আৰু x_{2} দ্বিঘাত সমীকৰণ ax^{2}+bx+c=0ৰ সমাধান হয়৷
r=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 25}}{2}
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
r=\frac{-\left(-10\right)±\sqrt{100-4\times 25}}{2}
বৰ্গ -10৷
r=\frac{-\left(-10\right)±\sqrt{100-100}}{2}
-4 বাৰ 25 পুৰণ কৰক৷
r=\frac{-\left(-10\right)±\sqrt{0}}{2}
-100 লৈ 100 যোগ কৰক৷
r=\frac{-\left(-10\right)±0}{2}
0-ৰ বৰ্গমূল লওক৷
r=\frac{10±0}{2}
-10ৰ বিপৰীত হৈছে 10৷
r^{2}-10r+25=\left(r-5\right)\left(r-5\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যৱহাৰ কৰিলে মূল উপাদান হয়৷ x_{1}ৰ বাবে 5 আৰু x_{2}ৰ বাবে 5 বিকল্প৷