কাৰক
\left(p-6\right)^{2}
মূল্যায়ন
\left(p-6\right)^{2}
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
a+b=-12 ab=1\times 36=36
এক্সপ্ৰেছনবোৰৰ গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে ৰাশিটো p^{2}+ap+bp+36 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
-1,-36 -2,-18 -3,-12 -4,-9 -6,-6
যিহেতু ab যোগাত্মক, সেয়েহে a আৰু bৰ অনুৰূপ সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে a আৰু b দুয়োটাই ঋণাত্মক। যিবোৰ যোৰাই গুণফল 36 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
-1-36=-37 -2-18=-20 -3-12=-15 -4-9=-13 -6-6=-12
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-6 b=-6
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -12।
\left(p^{2}-6p\right)+\left(-6p+36\right)
p^{2}-12p+36ক \left(p^{2}-6p\right)+\left(-6p+36\right) হিচাপে পুনৰ লিখক।
p\left(p-6\right)-6\left(p-6\right)
প্ৰথম গোটত p আৰু দ্বিতীয় গোটত -6ৰ গুণনীয়ক উলিয়াওক।
\left(p-6\right)\left(p-6\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম p-6ৰ গুণনীয়ক উলিয়াওক।
\left(p-6\right)^{2}
এটা বান'মিয়েল স্কুৱেৰ পুনঃলিখক৷
factor(p^{2}-12p+36)
এই ট্ৰিন'মিয়েল হৈছে এটা ট্ৰিন'মিয়েল বৰ্গৰ ৰূপ, সম্ভৱত এটা উমৈহতীয়া গুণনীয়ক দ্বাৰা পুৰণ কৰা হৈছিল৷ ট্ৰিন'মিয়েল বৰ্গক অগ্ৰণী আৰু অনুগামী টাৰ্মসমূহৰ বৰ্গমূল বিচাৰি ফেক্টৰেজ কৰিব পাৰি৷
\sqrt{36}=6
অনুগামী পদ 36ৰ বৰ্গমূল বিচাৰক৷
\left(p-6\right)^{2}
ট্ৰিন'মিয়েল বৰ্গ হৈছে বিনোমিয়েলৰ বৰ্গ, যি অগ্ৰণী আৰু অনুগামী পদসমূহৰ বৰ্গমূলৰ পাৰ্থক্য বা যোগফল, ট্ৰিন'মিয়েল বৰ্গৰ মধ্যম পদটোৰ চিনৰ দ্বাৰা নিৰ্ধাৰণ কৰা চিহ্নৰ সৈতে৷
p^{2}-12p+36=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ৰূপান্তৰ ব্যৱহাৰ কৰিলে দ্বিঘাত ত্ৰিপদৰাশি উৎপাদক হ'ব পাৰে, য'ত x_{1} আৰু x_{2} দ্বিঘাত সমীকৰণ ax^{2}+bx+c=0ৰ সমাধান হয়৷
p=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 36}}{2}
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
p=\frac{-\left(-12\right)±\sqrt{144-4\times 36}}{2}
বৰ্গ -12৷
p=\frac{-\left(-12\right)±\sqrt{144-144}}{2}
-4 বাৰ 36 পুৰণ কৰক৷
p=\frac{-\left(-12\right)±\sqrt{0}}{2}
-144 লৈ 144 যোগ কৰক৷
p=\frac{-\left(-12\right)±0}{2}
0-ৰ বৰ্গমূল লওক৷
p=\frac{12±0}{2}
-12ৰ বিপৰীত হৈছে 12৷
p^{2}-12p+36=\left(p-6\right)\left(p-6\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যৱহাৰ কৰিলে মূল উপাদান হয়৷ x_{1}ৰ বাবে 6 আৰু x_{2}ৰ বাবে 6 বিকল্প৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}