মুখ্য সমললৈ এৰি যাওক
কাৰক
Tick mark Image
মূল্যায়ন
Tick mark Image

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

a+b=-3 ab=1\left(-4\right)=-4
এক্সপ্ৰেছনবোৰৰ গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে ৰাশিটো m^{2}+am+bm-4 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
1,-4 2,-2
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে ঋণাত্মক সংখ্যাটোৰ যোগাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -4 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
1-4=-3 2-2=0
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-4 b=1
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -3।
\left(m^{2}-4m\right)+\left(m-4\right)
m^{2}-3m-4ক \left(m^{2}-4m\right)+\left(m-4\right) হিচাপে পুনৰ লিখক।
m\left(m-4\right)+m-4
m^{2}-4mত mৰ গুণনীয়ক উলিয়াওক।
\left(m-4\right)\left(m+1\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম m-4ৰ গুণনীয়ক উলিয়াওক।
m^{2}-3m-4=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ৰূপান্তৰ ব্যৱহাৰ কৰিলে দ্বিঘাত ত্ৰিপদৰাশি উৎপাদক হ'ব পাৰে, য'ত x_{1} আৰু x_{2} দ্বিঘাত সমীকৰণ ax^{2}+bx+c=0ৰ সমাধান হয়৷
m=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-4\right)}}{2}
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
m=\frac{-\left(-3\right)±\sqrt{9-4\left(-4\right)}}{2}
বৰ্গ -3৷
m=\frac{-\left(-3\right)±\sqrt{9+16}}{2}
-4 বাৰ -4 পুৰণ কৰক৷
m=\frac{-\left(-3\right)±\sqrt{25}}{2}
16 লৈ 9 যোগ কৰক৷
m=\frac{-\left(-3\right)±5}{2}
25-ৰ বৰ্গমূল লওক৷
m=\frac{3±5}{2}
-3ৰ বিপৰীত হৈছে 3৷
m=\frac{8}{2}
এতিয়া ± যোগ হ’লে সমীকৰণ m=\frac{3±5}{2} সমাধান কৰক৷ 5 লৈ 3 যোগ কৰক৷
m=4
2-ৰ দ্বাৰা 8 হৰণ কৰক৷
m=-\frac{2}{2}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ m=\frac{3±5}{2} সমাধান কৰক৷ 3-ৰ পৰা 5 বিয়োগ কৰক৷
m=-1
2-ৰ দ্বাৰা -2 হৰণ কৰক৷
m^{2}-3m-4=\left(m-4\right)\left(m-\left(-1\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যৱহাৰ কৰিলে মূল উপাদান হয়৷ x_{1}ৰ বাবে 4 আৰু x_{2}ৰ বাবে -1 বিকল্প৷
m^{2}-3m-4=\left(m-4\right)\left(m+1\right)
প্ৰপত্ৰ p-\left(-q\right) ৰ পৰা p+q লৈ সকলো এক্সপ্ৰেশ্বন সৰলীকৃত কৰক৷