মুখ্য সমললৈ এৰি যাওক
কাৰক
Tick mark Image
মূল্যায়ন
Tick mark Image

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

\left(k^{45}+1\right)\left(k^{90}-k^{45}+1\right)
k^{135}+1ক \left(k^{45}\right)^{3}+1^{3} হিচাপে পুনৰ লিখক। ঘনকৰ যোগফল এই ৰুল ব্যৱহাৰ কৰি উৎপাদক উলিয়াব পাৰি: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right)৷
\left(k^{15}+1\right)\left(k^{30}-k^{15}+1\right)
k^{45}+1 বিবেচনা কৰক। k^{45}+1ক \left(k^{15}\right)^{3}+1^{3} হিচাপে পুনৰ লিখক। ঘনকৰ যোগফল এই ৰুল ব্যৱহাৰ কৰি উৎপাদক উলিয়াব পাৰি: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right)৷
\left(k^{5}+1\right)\left(k^{10}-k^{5}+1\right)
k^{15}+1 বিবেচনা কৰক। k^{15}+1ক \left(k^{5}\right)^{3}+1^{3} হিচাপে পুনৰ লিখক। ঘনকৰ যোগফল এই ৰুল ব্যৱহাৰ কৰি উৎপাদক উলিয়াব পাৰি: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right)৷
\left(k+1\right)\left(k^{4}-k^{3}+k^{2}-k+1\right)
k^{5}+1 বিবেচনা কৰক। ৰেশ্যনেল বৰ্গমূল সূত্ৰৰ দ্বাৰা, এটা বহুপদৰ সকলো ৰেশ্যনেল ৰুট \frac{p}{q}ৰ ৰূপত থাকে, য'ত pএ ধ্ৰুৱক ৰাশি 1ক হৰণ কৰে আৰু qএ প্ৰমুখ গুণাংক 1ক হৰণ কৰে। এটা এনেকুৱা বৰ্গমূল হৈছে -1। বহুপদক k+1ৰ দ্বাৰা হৰণ কৰি এইটোৰ উৎপাদক উলিয়াওক।
\left(k^{4}-k^{3}+k^{2}-k+1\right)\left(k+1\right)\left(k^{10}-k^{5}+1\right)\left(k^{30}-k^{15}+1\right)\left(k^{90}-k^{45}+1\right)
সম্পূৰ্ণ উৎপাদক উলিওৱা অভিব্যক্তি পুনৰ লিখক। তলৰ বহুপদসমূহৰ উৎপাদক উলিওৱা হোৱা নাই যিহেতু সেইবোৰৰ কোনো ৰেশ্যনেল বৰ্গমূল নাই: k^{4}-k^{3}+k^{2}-k+1,k^{10}-k^{5}+1,k^{30}-k^{15}+1,k^{90}-k^{45}+1।