কাৰক
\left(k+1\right)\left(k^{4}-k^{3}+k^{2}-k+1\right)\left(k^{10}-k^{5}+1\right)\left(k^{30}-k^{15}+1\right)\left(k^{90}-k^{45}+1\right)
মূল্যায়ন
k^{135}+1
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
\left(k^{45}+1\right)\left(k^{90}-k^{45}+1\right)
k^{135}+1ক \left(k^{45}\right)^{3}+1^{3} হিচাপে পুনৰ লিখক। ঘনকৰ যোগফল এই ৰুল ব্যৱহাৰ কৰি উৎপাদক উলিয়াব পাৰি: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right)৷
\left(k^{15}+1\right)\left(k^{30}-k^{15}+1\right)
k^{45}+1 বিবেচনা কৰক। k^{45}+1ক \left(k^{15}\right)^{3}+1^{3} হিচাপে পুনৰ লিখক। ঘনকৰ যোগফল এই ৰুল ব্যৱহাৰ কৰি উৎপাদক উলিয়াব পাৰি: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right)৷
\left(k^{5}+1\right)\left(k^{10}-k^{5}+1\right)
k^{15}+1 বিবেচনা কৰক। k^{15}+1ক \left(k^{5}\right)^{3}+1^{3} হিচাপে পুনৰ লিখক। ঘনকৰ যোগফল এই ৰুল ব্যৱহাৰ কৰি উৎপাদক উলিয়াব পাৰি: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right)৷
\left(k+1\right)\left(k^{4}-k^{3}+k^{2}-k+1\right)
k^{5}+1 বিবেচনা কৰক। ৰেশ্যনেল বৰ্গমূল সূত্ৰৰ দ্বাৰা, এটা বহুপদৰ সকলো ৰেশ্যনেল ৰুট \frac{p}{q}ৰ ৰূপত থাকে, য'ত pএ ধ্ৰুৱক ৰাশি 1ক হৰণ কৰে আৰু qএ প্ৰমুখ গুণাংক 1ক হৰণ কৰে। এটা এনেকুৱা বৰ্গমূল হৈছে -1। বহুপদক k+1ৰ দ্বাৰা হৰণ কৰি এইটোৰ উৎপাদক উলিয়াওক।
\left(k^{4}-k^{3}+k^{2}-k+1\right)\left(k+1\right)\left(k^{10}-k^{5}+1\right)\left(k^{30}-k^{15}+1\right)\left(k^{90}-k^{45}+1\right)
সম্পূৰ্ণ উৎপাদক উলিওৱা অভিব্যক্তি পুনৰ লিখক। তলৰ বহুপদসমূহৰ উৎপাদক উলিওৱা হোৱা নাই যিহেতু সেইবোৰৰ কোনো ৰেশ্যনেল বৰ্গমূল নাই: k^{4}-k^{3}+k^{2}-k+1,k^{10}-k^{5}+1,k^{30}-k^{15}+1,k^{90}-k^{45}+1।
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}