ডিফাৰেনচিয়েট w.r.t. t
-\frac{1}{\left(\sin(t)\right)^{2}}
মূল্যায়ন
\cot(t)
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
\frac{\mathrm{d}}{\mathrm{d}t}(\frac{\cos(t)}{\sin(t)})
ক'টেনজেণ্টৰ সংজ্ঞা ব্যৱহাৰ কৰক৷
\frac{\sin(t)\frac{\mathrm{d}}{\mathrm{d}t}(\cos(t))-\cos(t)\frac{\mathrm{d}}{\mathrm{d}t}(\sin(t))}{\left(\sin(t)\right)^{2}}
যিকোনো দুটা ডিফাৰেনচিয়েবল ফাংচনৰ বাবে, দুটা ফাংচনৰ ক'চিয়েণ্টৰ ডিৰাইভেটিভ হৈছে ণিউমাৰেতৰৰ ডিৰাইভেটিভৰ ডিনোমিনেটৰ টাইম মাইনাচ ডিনোমিনেটৰৰ ডিৰাইভেটিভৰ নিউমাৰেটৰ টাইম, সকলোকে ডিনোমিনেটৰ স্কুৱাৰডৰ দ্বাৰা হৰণ কৰা হৈছে৷
\frac{\sin(t)\left(-\sin(t)\right)-\cos(t)\cos(t)}{\left(\sin(t)\right)^{2}}
sin(t)ৰ ডিৰাইভেটিভ হৈছে cos(t), আৰু cos(t)ৰ ডিৰাইভেটিভ হৈছে −sin(t)।
-\frac{\left(\sin(t)\right)^{2}+\left(\cos(t)\right)^{2}}{\left(\sin(t)\right)^{2}}
সৰলীকৰণ৷
-\frac{1}{\left(\sin(t)\right)^{2}}
পাইথোগোৰিয়ান আইডেনটিটি ব্যৱহাৰ কৰক৷
-\left(\csc(t)\right)^{2}
ক'চেচেণ্টৰ সংজ্ঞা ব্যৱহাৰ কৰক৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}