কাৰক
5\left(x-1\right)\left(x+3\right)
মূল্যায়ন
5\left(x-1\right)\left(x+3\right)
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
5\left(x^{2}+2x-3\right)
5ৰ গুণনীয়ক উলিয়াওক।
a+b=2 ab=1\left(-3\right)=-3
x^{2}+2x-3 বিবেচনা কৰক। এক্সপ্ৰেছনবোৰৰ গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে ৰাশিটো x^{2}+ax+bx-3 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
a=-1 b=3
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b যোগাত্মক, সেয়েহে যোগাত্মক সংখ্যাটোৰ ঋণাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। এনেধৰণৰ একমাত্ৰ যোৰা হৈছে ছিষ্টেম সমাধান।
\left(x^{2}-x\right)+\left(3x-3\right)
x^{2}+2x-3ক \left(x^{2}-x\right)+\left(3x-3\right) হিচাপে পুনৰ লিখক।
x\left(x-1\right)+3\left(x-1\right)
প্ৰথম গোটত x আৰু দ্বিতীয় গোটত 3ৰ গুণনীয়ক উলিয়াওক।
\left(x-1\right)\left(x+3\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম x-1ৰ গুণনীয়ক উলিয়াওক।
5\left(x-1\right)\left(x+3\right)
সম্পূৰ্ণ উৎপাদক উলিওৱা অভিব্যক্তি পুনৰ লিখক।
5x^{2}+10x-15=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ৰূপান্তৰ ব্যৱহাৰ কৰিলে দ্বিঘাত ত্ৰিপদৰাশি উৎপাদক হ'ব পাৰে, য'ত x_{1} আৰু x_{2} দ্বিঘাত সমীকৰণ ax^{2}+bx+c=0ৰ সমাধান হয়৷
x=\frac{-10±\sqrt{10^{2}-4\times 5\left(-15\right)}}{2\times 5}
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-10±\sqrt{100-4\times 5\left(-15\right)}}{2\times 5}
বৰ্গ 10৷
x=\frac{-10±\sqrt{100-20\left(-15\right)}}{2\times 5}
-4 বাৰ 5 পুৰণ কৰক৷
x=\frac{-10±\sqrt{100+300}}{2\times 5}
-20 বাৰ -15 পুৰণ কৰক৷
x=\frac{-10±\sqrt{400}}{2\times 5}
300 লৈ 100 যোগ কৰক৷
x=\frac{-10±20}{2\times 5}
400-ৰ বৰ্গমূল লওক৷
x=\frac{-10±20}{10}
2 বাৰ 5 পুৰণ কৰক৷
x=\frac{10}{10}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{-10±20}{10} সমাধান কৰক৷ 20 লৈ -10 যোগ কৰক৷
x=1
10-ৰ দ্বাৰা 10 হৰণ কৰক৷
x=-\frac{30}{10}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{-10±20}{10} সমাধান কৰক৷ -10-ৰ পৰা 20 বিয়োগ কৰক৷
x=-3
10-ৰ দ্বাৰা -30 হৰণ কৰক৷
5x^{2}+10x-15=5\left(x-1\right)\left(x-\left(-3\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যৱহাৰ কৰিলে মূল উপাদান হয়৷ x_{1}ৰ বাবে 1 আৰু x_{2}ৰ বাবে -3 বিকল্প৷
5x^{2}+10x-15=5\left(x-1\right)\left(x+3\right)
প্ৰপত্ৰ p-\left(-q\right) ৰ পৰা p+q লৈ সকলো এক্সপ্ৰেশ্বন সৰলীকৃত কৰক৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}