f, n, W-ৰ বাবে সমাধান কৰক
f=15
n\in \mathrm{R}
W = \frac{15}{4} = 3\frac{3}{4} = 3.75
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
fn-\left(fn-f\right)=15
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ fক n-1ৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
fn-fn+f=15
fn-fৰ বিপৰীত বিচাৰিবলৈ, প্ৰত্যেকটো পদৰ বিপৰীত অৰ্থ বিচাৰক৷
f=15
0 লাভ কৰিবলৈ fn আৰু -fn একত্ৰ কৰক৷
15\times 1=4W
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ চলকৰ জ্ঞাত মানবোৰ সমীকৰণত আন্তঃসংযোগ কৰক৷
15=4W
15 লাভ কৰিবৰ বাবে 15 আৰু 1 পুৰণ কৰক৷
4W=15
কাষবোৰ সাল-সলনি কৰক যাতে সকলো চলক পদ বাঁও দিশে থাকে৷
W=\frac{15}{4}
4-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
f=15 W=\frac{15}{4}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}