মুখ্য সমললৈ এৰি যাওক
কাৰক
Tick mark Image
মূল্যায়ন
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

x^{2}-22x+121
এটা মান্য ৰূপত বহুৱাবলৈ বহুপদ পুনঃব্যৱস্থিত কৰক৷ সৰ্বোচ্চৰ পৰা নিম্ন পাৱাৰ ক্ৰমত টাৰ্মসমূহ ৰাখক৷
a+b=-22 ab=1\times 121=121
এক্সপ্ৰেছনবোৰৰ গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে ৰাশিটো x^{2}+ax+bx+121 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
-1,-121 -11,-11
যিহেতু ab যোগাত্মক, সেয়েহে a আৰু bৰ অনুৰূপ সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে a আৰু b দুয়োটাই ঋণাত্মক। যিবোৰ যোৰাই গুণফল 121 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
-1-121=-122 -11-11=-22
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-11 b=-11
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -22।
\left(x^{2}-11x\right)+\left(-11x+121\right)
x^{2}-22x+121ক \left(x^{2}-11x\right)+\left(-11x+121\right) হিচাপে পুনৰ লিখক।
x\left(x-11\right)-11\left(x-11\right)
প্ৰথম গোটত x আৰু দ্বিতীয় গোটত -11ৰ গুণনীয়ক উলিয়াওক।
\left(x-11\right)\left(x-11\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম x-11ৰ গুণনীয়ক উলিয়াওক।
\left(x-11\right)^{2}
এটা বান'মিয়েল স্কুৱেৰ পুনঃলিখক৷
factor(x^{2}-22x+121)
এই ট্ৰিন'মিয়েল হৈছে এটা ট্ৰিন'মিয়েল বৰ্গৰ ৰূপ, সম্ভৱত এটা উমৈহতীয়া গুণনীয়ক দ্বাৰা পুৰণ কৰা হৈছিল৷ ট্ৰিন'মিয়েল বৰ্গক অগ্ৰণী আৰু অনুগামী টাৰ্মসমূহৰ বৰ্গমূল বিচাৰি ফেক্টৰেজ কৰিব পাৰি৷
\sqrt{121}=11
অনুগামী পদ 121ৰ বৰ্গমূল বিচাৰক৷
\left(x-11\right)^{2}
ট্ৰিন'মিয়েল বৰ্গ হৈছে বিনোমিয়েলৰ বৰ্গ, যি অগ্ৰণী আৰু অনুগামী পদসমূহৰ বৰ্গমূলৰ পাৰ্থক্য বা যোগফল, ট্ৰিন'মিয়েল বৰ্গৰ মধ্যম পদটোৰ চিনৰ দ্বাৰা নিৰ্ধাৰণ কৰা চিহ্নৰ সৈতে৷
x^{2}-22x+121=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ৰূপান্তৰ ব্যৱহাৰ কৰিলে দ্বিঘাত ত্ৰিপদৰাশি উৎপাদক হ'ব পাৰে, য'ত x_{1} আৰু x_{2} দ্বিঘাত সমীকৰণ ax^{2}+bx+c=0ৰ সমাধান হয়৷
x=\frac{-\left(-22\right)±\sqrt{\left(-22\right)^{2}-4\times 121}}{2}
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-\left(-22\right)±\sqrt{484-4\times 121}}{2}
বৰ্গ -22৷
x=\frac{-\left(-22\right)±\sqrt{484-484}}{2}
-4 বাৰ 121 পুৰণ কৰক৷
x=\frac{-\left(-22\right)±\sqrt{0}}{2}
-484 লৈ 484 যোগ কৰক৷
x=\frac{-\left(-22\right)±0}{2}
0-ৰ বৰ্গমূল লওক৷
x=\frac{22±0}{2}
-22ৰ বিপৰীত হৈছে 22৷
x^{2}-22x+121=\left(x-11\right)\left(x-11\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যৱহাৰ কৰিলে মূল উপাদান হয়৷ x_{1}ৰ বাবে 11 আৰু x_{2}ৰ বাবে 11 বিকল্প৷